博碩士論文 90223048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.88.220.93
姓名 陳元曼(Yuan-Mam Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 大體積固相微萃取水中揮發性有機污染物
(Large Volume Solid Phase Microextraction of Volatile Organic Compounds in Aqueous Sample)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用★ VOC前濃縮與預警系統之建構
★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用★ 臭氧前趨物連續監測與臭氧生成之光化學探討
★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析
★ 近地表臭氧前驅物分析之前濃縮技術改良★ 自動化噴霧捕捉分析系統之建立與研究
★ 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳﹑有機污染物垂直探空光化研究★ 大體積固相微萃取技術應用於被動式空氣採樣及動力學探討
★ 以Heart-cut技術配合單偵檢器發展氣相層析“剪裁(tailoring)”技術★ 以質譜儀同時分析C3 – C12揮發性臭氧前驅物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 固相微萃取(solid phase micro extraction;SPME)為近年來發展迅速之免溶劑萃取技術,目前也廣泛應用在許多液體樣品的分析上,SPME具有快速、省時、不需使用任何有機溶劑及符合經濟效率的優點,但有鑒於氣相層析儀(gas chromatography; GC)注射埠只能允許針筒插入進樣,因此商業化SPME必須以針筒方式設計。本實驗利用增加靜相的體積,以提高分析物的萃取量,以及利用SPME的概念自行塗佈poly dimethylsiloxane (PDMS)高分子薄膜,其成份接近於商業化SPME的吸附靜相,再配合自行研發之進樣裝置,使熱脫附分析物不再侷限於GC之注射埠,因此大幅降低偵測極限,唯塗佈上交聯過的PDMS 固相萃取棒熱脫附之後產生固定矽烷分子破片。
在實驗過程中自行設計了一套熱脫附進樣系統,再連續9次的分析50 μg/L(ppb)濃度之benzene、toluene、ethylbenzene、m-xylene、o-xylene (BTEX) 樣品,其再現性約達RSD 4%~12% 左右。與商業化SPME萃取裝置比較,在相同萃取條件下,自製大體積PDMS裝置無論對於標準樣品或真實水樣在層析圖譜上的表現幾乎完全相同但在感度表現上高出數十倍以上。另外,當未達平衡狀態,當實驗條件例如萃取時間、分析物之濃度及溫度均保持固定,被靜相所吸附之分析物量與其初始濃度,兩者間存在一比例關係,說明了當靜相體積固定,即使在非平衡狀態下,定量仍是可行的。根據此一簡單理論嘗試自行製作固相微萃取靜相,以增大靜相體積增加吸附量達到降低偵測極限外,也利用連續10次的重複萃取快速求得,GC所測得感度與每次萃取所存留一部分待測物而成指數下降函數,進而求得未知樣品之濃度。由此方法可知道,有些分析方法是可以完全迴避了製作檢量線的需求,不利用檢量線而也有很好的再現性,此一特點成為本研究最為獨特重點。
摘要(英) Sold phase micro extraction (SPME) has grown wide popularity in recently years in analyzing volatile or semi-volatile organic compounds in aqueous samples due to its ease of use, adequate sensitivity, solvent free in extraction, etc. The most attractive advantage with SPME over other means of extraction lies in the fact that no solvent is needed in the extraction procedure, the polymer phase coated on a thin fused silica fiber is employed as the extraction media to absorb organic analytes in aqueous samples. Subsequently, the fiber is inserted in the GC injection port to rapidly desorb the analytes onto the column. Assuming the volume of the polymer phase is negligible compared to that of the aqueous phase, the sensitivity of this technique is proportional to the volume of the polymer phase. Nevetheless, the geometry of regular GC injector forbids any forms of sample introduction other than needle type of insertion, as which the commercial SPME device is configured. To further lower the detection limit of SPME the injection port has to be redesign to accommodate a polymer phase of significant larger volume than the commercial SPME fiber.
In this study, a thick film of polydimethylsiloxane (PDMS) polymer was coated on a glass rod of 5 mm O.D. x 5 cm length. A renovated thermal desorption device was designed and constructed to accommodate the thick PDMS rod. Furthermore, to avoid peak broadening in chromatography, a microtrap packed with chemical sorbents was employed to focus analytes desorbed from the large volume of PDMS, which resulted in comparable peak width but considerable peak height than the commercial SPME. Based on the analysis of standards containing 50 ?g/L of benzene, toluene, ethylbenzene, xylene and various true underground water samples, the self prepared large volume PDMS and accompanying device is several tens fold to 2 order of magnitude in sensitivity enhancement.
We further employed the advantage of large volume PDMS extraction technique to develop a unique calibration method for BTEX based on the rapid exponential decrease in concentration from repeated extraction of a standard mixture. A linear relationship of log FID response versus extraction number was determined to be linear, which is consistent with the partition theory of extraction. Although the calibration was based on one standard mixture of unknown concentrations, the statistic risk arising from one-point calibration was minimized by the linear fitting of the numerous points generated by the multiple extraction procedure.
關鍵字(中) ★ 聚二甲基矽氧烷
★ 大體積固相微萃取
★ 非平衡狀態
關鍵字(英) ★ large volume solid phase microextraction
★ poly dimethylsiloxane (PDMS)
★ noneqilibrium condition
論文目次 謝誌I
中文摘要II
英文摘要IV
目錄V
圖目錄VII
表目錄X
第一章前言1
1. 水中有機污染物分析方法之介紹1
2. 大體積固相微萃取理論9
3. 實驗目的17
第二章實驗設計20
1. 高分子薄膜塗佈20
2. 進樣濃縮裝置20
3. 標準溶液的製備23
4. 商業化SPME裝置23
第三章實驗結果與討論26
1. 空白實驗26
2. 分析含有BTEX標準品水樣27
3. 分析物BTEX對於殘留度之探討27
4. 高分子薄膜萃取效率再現性28
5. 與商業化固相微萃取法比較28
6. 萃取真實樣品29
7. 非平衡之定量-取代傳統檢量線製作31
第四章總結36
第五章參考文獻38
參考文獻 1. Scheppers-Wercinski, S.A., Ed. Solid phase microextraction: a practical guide; Marcel Dekker: New York,1999.
2. Harrison, I.; Leader, R.U.; Higgo, J.J.W.; Tjell,J.C. J. Chromatogr. A 1994, 688, 181-188.
3. Prosen, H.; Zupancic-Kraij, L. Trends in Anal. Chem. 1999, 18, 272-282.
4. 環署檢字第123636號公告NIEA R102.00民國八十五年四月
5. 環署檢字第26444號公告NIEA R103.00民國八十五年五月
6. 環署檢字第59200號公告NIEA R110.00民國八十五年十月
7. 環署檢字第31085號公告NIEA R108.00民國八十五年六月
8. 環署檢字第31083號公告NIEA R104.00民國八十五年六月
9. Arthur, C.L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145-2148.
10. Silgoner, I.; Rosenberg, E., J. Chromatogr. A. 1997, 259-270.
11. Kessels, H.; Hoogerwerf , W.; Lips, J. J. Chromatogr. Sci. 1992, 30, 207.
12. Bruno, K. J. Chromatogr. A 1999, 842, 163-205.
13. Yeh, H. M.; Huang, C.M. J. of Membrane Sci. 1995, 103, 135- 150.
14. Kotiaho, Y.; Lauritsen, F.R.; Choudhury, T.K. Anal. Chem. 1991, 63, 875A- 883A.
15. Yang, M.J.; Harm, S.; Luo, Y.Z.; Pawliszyn, J. Anal. Chem. 1994, 66, 1339- 1346.
16. Simpson, N.J.K. Solid-phase extraction principle techniques and application. Mrcel Dekker Inc., New York Basel.2000.
17. Pawliszyn, J. Ed Applications of solid phase microextraction; Royal Society Of Chemistry: Cornwall, U.K., 1999.
18. Pawliszyn, J. Solid Phase Microextraction: Theory and Practice Wiley-VCH: New York, 1997.
19. Arthur C.L.; Pawliszyn, J.; Water Pollut. Res. J. Can 1990, 62, 2145- 2148.
20. Arthur, C.L.; Killam, L.M.; Buchholz, K.D. ; Pawliszyn, J.; Berg, J.R. Anal. Chem. 1992, 64, 1960-1966.
21. Louch, D.; Motlagh, S.; Pawliszyn, J. Anal. Chem. 1993, 65, 1843-1852.
22. Chai, M.; Arthur, C.L.; Pawliszyn, J.; Belardi, R.P.; Pratt, K.F. Analyst 1993, 118, 1501-1505.
23. Zhang, Z.; Pawliszyn, J. Anal. Chem. 1993, 65, 843-1852.
24. Buchholz, K.D.; Pawliszyn, J. Environ. Sci. & Technol. 1993, 27, 2844-2848.
25. Buchholz, K.D.; Pawliszyn, J. Anal. Chem. 1994, 66, 160-167.
26. Pawliszyn, J.; Pawliszyn, B.; Pawliszyn, M. Solid phase microextracton. The Chemical Educator 2, 1997.
27. Gang, Shen; Hian Kee Lee J. Anal. Chem. 2003, 75, 98-103.
28. Eisert, R.; K, Levsen. J. Chromatogr. A. 1996, 733, 143-157.
29. Hawthone, S.; Miller, D.; Arthur, C.; Pawliszyn, J. J. Chromatogr. A 1992, 603, 185-191.
30. Wasowicz, E.; Kaminski, E.; Jelen, H.; Wlazly, K. J. Agric. Food Chem. 1998, 46, (4), 1469-1473.
31. Singer, K.; Wenz, B.; Seefeld, V.; Seeper, U. German Lab-Med. 1995, 18, (2), 112-118.
32. Page, B.D.; Lacroix, G. J. Chromatogr. A. 1993, 648, 199-211.
33. Choudhury, T.; Gerhardt, K.; Mawhinney, T. Environ. Sci. & Technol. 1996, 30, 3259-3265.
34. Muller, L.; Gorecki, T.; Pawliszyn, J. Anal. Chem. 1999, 364, 610-616.
35. Koziel, J.; Jia, M.; Khaled, A. Trends in Anal. Chem. 1999, 400, 153-162.
36. Bao, M.; Pantani, F.; Griffini, O. J. Chromatogr. A. 1998, 809, 75-87
37. Arthur, C.; Pratt, K.; Belardi, R.; Motagh, S.; Pawliszyn, J. J. High Res. Chromatogr. 1992, 15, 741-744.
38. Migdic, C.; Pawliszyn, J. J.Chromatogr. A. 1996, 723, 111-112.
39. Yang, Y.; Miller, D.J.; Hawthorne, S.B. J.Chromatogr. A. 1998, 800, 1866.
40. Maria, L.; Ken, L.; Merv, F. Anal. Chem. 1998, 70, 2510-2515.
41. Chen, J.; Pawliszyn, J. Anal. Chem. 1995, 67, 2530-2563.
42. Daimon, H.; Pawliszyn, J. Anal. Chem. 1996, 33, 421-424.
43. Langenfeld, J.; Hawthorne, S.; Miller, D. J. Chromatogr. A 1996, 740, 139-145.
44. Benijts, T.; Vercammen, J.; Dams, R.; Tuan, H.P.; Lambert, W.; Sanddra, P. J. Chromatogr. B. 2000, 755, 137-142.
45. Ai, J. Anal. Chem. 1997, 69, 1230-1236.
46. Ai, J. Anal. Chem. 1997, 16, 3260.
47. Ai, J. Anal. Chem. 1998, 21, 4822.
48. Agnes, G. O.; Mayer,P.; Johannes, Tolls. Anal. Chem. 2000, 72, 2802-2808.
49. Robert, J.B.; Bruce, W. Z. Anal. Chem. 1999, 71, 92-101.
50. Douglas A. Skoog. Analytical chemistry, 7th Edition.
51. 陳韋立,大氣及水樣中揮發性有機氣體自動化分析技術之建立與應用, 中央大學碩士論文, 2000 。
52. Shirey, R.E.; Mindrup, R.F. SPME-Adsorption versus Absorption: Which fiber is best for your application? 1-31, PITTCON 2000.
53. Gorecki, T.; TU, X.; Pawliszyn, J. Analyst 1999, 124, 643-649.
54. Alpendurada, M. J. Chromatogr. A. 2000, 889, 3-14.
55. Thomas, T.C.; Kendrick, T.C. J. Polymer Science 1969, A-2, 7, 537-549.
56. Zhang, Z.; Yang, M.; Pawliszyn, J. Anal. Chem. 1994, 66, 884-852.
57. Chong, S.L.; Wang, D.; Hayes, J.D.; Wilhite, B.W.; Malik, A. Anal. Chem. 1997, 69, 3889-3898.
58. Chen, W.; Wang, J.L. J. Chromatogr. A. 2001, 927,143-154.
59. Silgoner, I.; Rosenberg, E. J. Chromatogr. A. 1997, 259-270.
60. 陳元曼; 王家麟, 化學 2003, 61
指導教授 王家麟(Jia-Lin Wang) 審核日期 2003-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明