博碩士論文 90226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:52.15.112.69
姓名 林師勤(Shih-Chyn Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 介電電濕式數位微流體驅動系統之探討
(Study of EWOD-based Actuation for Digital Microfluidic System)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 發光二極體照明系統之色彩特性優化設計
★ 以EWOD為基礎的長鏈高分子原位合成器★ 色盲量化測試系統之研究
★ 可調式自然日光模擬光源之製作★ 演色性評估之相關性指標
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ 生物晶片之螢光光學檢測
★ 生物晶片螢光分析之微光學模組★ 光學式生化反應即時偵測系統
★ 微液滴驅動之研究與探討★ LED光源新式應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討介電電濕式(electrowetting on dielectric)微流體元件的設計與製作。此元件展現即時微流體系統的潛能,並且能應用於實驗室平台晶片(lab-on-a-chip)、微全分析系統(micro total analysis system)。而微小化後的元件則有:減少樣本(sample)的體積、低成本、可拋式以及可攜帶性等優點。
本文以介電電濕法來製作微流體系統元件。首先,液滴在不同性質表面的接觸角被提出來討論。其次,比較傳統型、覆晶型與所提出改良型製程之優缺點。再來探討一維(1-D)與二維(2-D)的介電電濕元件在不同的介電層、不同的通道間距與不同濃度的鐵氟龍(DuPont Teflon® AF)溶液情況下,元件操作的情形。本文製作的介電電濕式微流體系統元件,在透過電漿輔助化學氣相沉積系統(PECVD)所成長出的介電層,其在大氣環境下的操作電壓約為35伏特。而微流體系統四種基本的操作模式也在此實驗中展現。此外,由螢光棒所分離出來的兩種液體,研究兩種不同的液滴在合併後內部混合的現象。最後,藉由這兩種液體混合後所發出的螢光,提出一種利用介電電濕微流體元件所構成的去氧核醣核酸(DNA)雜交反應(hybridization)元件與其反應速率的即時監測系統。
摘要(英) This thesis reports the design and fabrication of an electrowetting on dielectric (EWOD) microfluidic device that has the potential to demonstrate technologies for real-time microfluidic system applications in lab-on-a-chip (LoC) or micro total analysis system (µTAS). In such a way, the merits of miniaturized device are much smaller volume of samples, low cost, disposable, and portable.
The microfluidic system is based on the principle of EWOD. First, contact angles of droplets on different surface were discussed. Second, the fabrication of EWOD devices by the conventional and the flip-flop processes were compared with the improved process and their advantages and disadvantages were also discussed. Third, 1-D and 2-D EWOD devices were tested for various fabrication parameters including materials for dielectric layer, gap spacing, and concentration of Teflon® AF. With the dielectric layer deposited by PECVD, the driving voltage of the EWOD-based microfluidic system was around 35 V in air environment. In experiments, the four fundamental operations of microfluidic system were carried out in the EWOD device. In addition, two droplets extracted from the light stick were applied to investigate the mixing process in real time. To the end, a novel configuration for real time monitoring on DNA hybridization reaction rate was proposed on the base of the EWOD microfluidic device.
關鍵字(中) ★ 生物晶片
★ 實驗室晶片
★ 接觸角
★ 介電電濕
★ 微流體
關鍵字(英) ★ microfluidic
★ lab on a chip
★ biochip
★ EWOD
★ electrowetting on dielectric
★ contact angle
論文目次 Chapter 1 Introduction .................................................1
Chapter 2 Actuation of Microfluidics ...................................8
2.1 Principles of Microfluidic Actuation .......................8
2.2 Surface Tension ............................................9
2.3 Microactuation Using Surface Tension ......................13
2.3.1 Electrocapillary ....................................13
2.3.2 Continuous Electrowetting ...........................14
2.3.3 Electrowetting ......................................17
2.3.4 Electrowetting on Dielectric (EWOD) .................19
2.4 Microfluidic Devices ......................................25
Chapter 3 Design and Fabrication of EWOD-Based Microfluidic Device ....27
3.1 Contact Angle Measurement .................................27
3.2 EWOD-based Microfluidic Device Design .....................35
3.2.1 EWOD Driving Voltage ................................35
3.2.2 Photolithographic Mask of EWOD Pattern ..............38
3.3 Process Condition of EWOD Device ..........................39
3.3.1 Conventional Process of EWOD Device .................39
3.3.2 Improved Process of EWOD Device .....................43
3.3.3 Flip-chip Process of EWOD Device ....................51
3.3.4 Summary .............................................56
Chapter 4 Tests and Results of EWOD-based Microfluidic Devices ........57
4.1 The Goal of EWOD-based Microfluidic Device ................57
4.2 Experiment Setup of EWOD-based Microfluidic Device ........59
4.3 Tests of 1-D EWOD-based Microfluidic Devices ..............62
4.3.1 SiNx, 200 Å Teflon AF film and 70 µm channel gap ....64
4.3.2 SiNx, 600 Å Teflon AF film and 70 µm channel gap ....67
4.3.3 SiNx, 200 Å Teflon AF film and 1 µm channel gap .....70
4.3.4 SiNx, 600 Å Teflon AF film and 1 µm channel gap .....72
4.3.5 SiO2, 200 Å Teflon AF film and 70 µm channel gap ....74
4.3.6 SiO2, 600 Å Teflon AF film and 70 µm channel gap ....76
4.3.7 SiO2, 200 Å Teflon AF film and 1 µm channel gap .....79
4.3.8 SiO2, 600 Å Teflon AF film and 1 µm channel gap .....81
4.4 Tests of 2-D EWOD-based Microfluidic Devices ..............84
4.4.1 SiNx and 200 Å Teflon AF film .......................85
4.4.2 SiNx and 600 Å Teflon AF film .......................88
4.4.3 SiO2 and 200 Å Teflon AF film .......................91
4.4.4 SiO2 and 600 Å Teflon AF film .......................94
4.5 Summary ...................................................97
Chapter 5 Applications of EWOD-based Microfluidic System .............101
5.1 Droplets Merging .........................................101
5.2 Real-time Monitor for DNA Hybridization Reaction Rate ....106
Chapter 6 Conclusion .................................................110
Reference ............................................................112
參考文獻 [1] M. Madou, Fundamentals of Microfabrication. Boca Raton, FL: CRC, Ch.9, 1997
[2] G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York: McGraw - Hill, Ch. 9, 1998.
[3] C.-M Ho, “Fluidics-the link between micro and nano sciences and
technologies-,” in Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland,
pp. 375–384, 2001
[4] S.K. Cho, H. Moon, and C.J. Kim, “Creating, transporting, cutting, and
merging liquid droplets by electrowetting-based actuation for digital
microfluidic circuits,” Microelectromechanical Systems, Journal of , Vol.
12 , No. 1 , pp. 70-80, 2003
[5] S. Shoji, “Microsystem Technology in Chemistry and Life Science,” H.
Becker, A. Manz, Eds., Vol. 194, pp. 164-188, 1998
[6] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.J. Kim,
“Electrowetting and electrowetting-on-dielectric for microscale liquid
handling,” Sens. Actuators, Phys. A, Vol. 95, pp. 259–268, 2002
[7] P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker,
New York, Ch. 6 and 12, 1986
[8] T. K. Jun and C.-J. Kim, “Valveless pumping using traversing vapor
bubbles in microchannels,” J. Appl. Phys., Vol. 83, No. 11, pp. 5658–
5664, 1998.
[9] T. A. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete
drops in microfabricated analysis devices,” AIChE J., Vol. 45, No. 2, pp.
350–366, 1999
[10] H. Matsumoto and J. E. Colgate, “Preliminary investigation of
micropumping based on electrical control of interfacial tension,” in
Proc. IEEE MEMS Workshop, Napa Valley, CA, pp. 105-110, 1990
[11] B. Berge, “Electrocapillarity and wetting of insulator films by water,”
Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp.157–
163, 1993.
[12] M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, “Fluid control in
multichannel structures by electrocapillary pressure,” Science, Vol.
291, pp. 277–280, 2001
[13] B. Berge, C. R. Acad. Sci. Ser. II, 317, 157, 1993.
[14] G. Beni, and M. A. Tenan, “Dynamics of electrowetting displays,” J.
Appl. Phys., Vol. 52, pp. 6011-6015, 1981
[15] J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting
switch for multimode optical fibers,” Appl. Opt. Vol. 22, pp.1765-1770,
1983
[16] G. Beni, and S. Hackwood, “Electro-wetting displays,” Appl. Phys. Lett.
Vol. 38, pp. 207-209, 1981
[17] J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical
switch,” Appl. Phys. Lett., Vol. 40, pp.4-5, 1982
[18] M. Vallet, M. Vallade, and B. Berge, “Limiting phenomena for the
spreading of water on polymer films by electrowetting,” Eur. Phys. J. B
11, pp. 583-591, 1999
[19] M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based
actuation of liquid droplets for microfluidic applications,” Appl. Phys.
Lett., Vol. 77, No. 11, pp. 1725–1726, 2000
[20] J. Lee, H. Moon, J. Fowler, C.-J. Kim, and T. Schoellhammer,
“Addressable micro liquid handling by electric control of surface
tension,” in Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland, pp.
499-502, 2001
[21] S. K. Cho, H. Moon, J. Fowler and C.J. Kim, “Splitting a liquid droplet
for electrowetting-based microfluidics,” in International Mechanical
Engineering Congress and Exposition, New York, NY, Nov. 2001,
IMECE2001/MEMS-23 831.
[22] R. B. Fair, M. G. Pollack, R. Woo, V. K. Pamula, R. Hong, T. Zhang, and
J. Venkatraman, “A micro-watt metal-insulator-solution-transport (MIST)
devices for scalable digital bio-microfluidic systems,” in Electron
Devices Meeting, IEDM Technical Digest International, Washington DC,
pp.16.4.1–16.4.4, 2001
[23] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
actuation of droplets for integrated microfluidics,” Lab Chip, Vol. 2,
pp. 96–101, 2002
[24] S. K. Cho, S.-K Fan, H. Moon, and C.-J Kim, “Toward digital microfluidic
circuits: creating, transporting, cutting and merging liquid droplets by
electrowetting-based actuation,” in Proc. IEEE Int. Conf. MEMS, Las
Vegas, NV, pp. 32–35, 2002
[25] J. Fowler, H. Moon, and C.J. Kim, “Enhancement of mixing by droplet
based microfluidics,” in Proc. IEEE Int. Conf. MEMS, Las Vegas, NV, pp.
97–100, 2002
[26] P. Paik, V. K. Pamula, and R. B. Fair, “Rapid droplet mixers for digital
microfluidic systems,” Lab Chip, Vol. 3, pp. 253–259, 2003
[27] Trimmer, W.S.N., “Microrobots and Micromechanical Systems,” Sensors and
Actuators, Vol. 19, No.3, pp. 267-287, 1989.
[28] J. Lee, and C.J. Kim, “Surface-Tension-Driven Microactuation Based on
Continuous Electrowetting,” J. Microelectromech. Syst., Vol. 9, No. 2,
pp. 171-180, 2000
[29] R. P. Feynman, “Infinitesimal machinery,” J. Microelectromech. Syst.,
Vol. 2, pp. 4–14, 1993
[30] R. Legtenberg, J. Elders, and M. Elwenspoek, “Stiction of Surface
Microstructures after Rinsing and Drying: Model and Investigations of
Adhesion Mechanisms,” Transducers, Yokohama, pp.198-201, 1993
[31] C. J. Kim, “MEMS devices based on the use of surface tension,” ISDRS,
Charlottesville, VA, 1999.
[32] T.A. Mcmahon, and J.T. Bonner, On Size and Life, Scientific American
Books, New York (1983)
[33] J. Lee, Dissertation “Microactuation by Continuous Electrowetting and
Electrowetting: Theory, Fabrication and Demonstration”, UCLA, 2000
[34] P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker,
New York, Ch. 6&12, 1986
[35] G. Beni, S. Hackwood, and J.L. Jackel, “Continuous Electrowetting
Effect,” Appl. Phys. Lett., Vol. 40, No. 10, pp. 912-914, 1982
[36] J. O. M. Bockris, and A. K. N. Reddy, Modern electrochemistry, Plenum
Press, New York, Ch. 7 and 8, 1970
[37] A.W. Adamson, and A.P. Gast, Physical Chemistry of surfaces, John Wiley
and Sons Inc., New York, Ch. 5, 1997
[38] N.K. Adam, The Physics and Chemistry of Surfaces, Oxford University
Press, London, Ch. 1, 8, 9, 1941
[39] M. G. Lippmann, “Relations entre les phénomènes electriques et
capillaires,” Ann. Chim. Phys., Vol. 5, No. 11, pp. 494–549, 1875
[40] H. Moon, S.K. Cho, R.L. Garrell, and C.J. Kim, “Low voltage
electrowetting- on-dielectric,” J. Appl. Phys., Vol. 92, pp. 4080–4087,
2002
[41] J. Ulrich and R. Zengerle, “Static and dynamic flow simulation of a KOH
etched microvalve using the finite-element method,” Sensors and
Actuators A, Vol. 53, pp. 379–385, 1996
[42] J. Pfahler, J. harley, and H. Bau, “Liquid transport in micro and
submicron channels,” Sensors and Actuators A, Vol. 22, 1990.
[43] A. Rasmussen and M. E. Zaghloul, “The design and fabrication of
microfluidic flow sensors,” in Proc. Int. Symposium on Circuits and
Systems, Vol. 5, pp. 136–139, 1999
[44] H. J. I. Verheijen and M. W. J. Prins, “Reversible electrowetting and
trapping of charge: model and experiments,” Langmuir, Vol. 15, pp. 6616–
6620, 1999
[45] V. Peykov, A. Quinn, and J. Ralston, “Electrowetting: a model for
contact-angle saturation,” Colloid Polymer Sci., Vol. 278, pp. 789–793,
2000
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2004-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明