博碩士論文 90243006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:100.24.115.253
姓名 許乃木(Nai-Mu Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發
(Accelerate emitters discovery through combinatorial organometallic synthesis and screening methodolgy)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑★ 合成具有紅色磷光性質的銥金屬錯合物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,有機發光二極體(OLED)快速的發展。主要的原因在於它具有製作上的簡易性、低驅動電壓、低秏電功率、廣視角、高亮度和高效率、超薄結構與機械可撓性等性質,因此有機發光二極體於未來幾年內是極有可能挑戰平面液晶顯示器(LCD)的市場。而現在已有幾家公司已生產單色OLED顯示器用於手機螢幕與汽車儀表板上,而下個市場上的目標則是開發全色系OLED顯示器。全色系OLED顯示器則需紅、綠、藍三色系發光材料,而開發新型藍光材料為近年來較為熱門的題材,原因在於它能轉換成其他兩種色系的發光材料。由於藍光材料的能帶(band gap)較大,擁有較高的低未配對分子軌域(LUMO),易造成陰極電子不易躍遷,且現有的藍光材料的光色純度、穩定度不夠與生命週期短(lifetime),這些仍是有待研究與改進的地方。另一有趣的課材則為紅光材料,主要分成聚合物材料與小分子材料,此兩種不同物性的材料皆利用微調(tuning)結構的共軛性質來造成能帶降低而獲得純光色,確易造成其光量子產率下降,使其不利於應用。
組合式化學已廣泛的應用於藥物開發與生物技術上,其平行(parallel)固相合成方法則為最為廣為使用的合成工具。組合式合成於材料的開發上,現今大多使用傳統化學合成方法來進行,這始終無法加速材料的開發。本論文則是利用組合式固相合成的方式來進行OLED紅光磷光材料的開發並進行放光波長的screening。利用我們所開投的方法,我們可以於固相合成中進行有機金屬的反應,並於樹脂(resin)進行紅光發光材料的波長分析,最後選出可行的發光材料進行device的製作。利用此方法,我們獲得其中一紅光材料具有不錯的色彩飽合度與發光效率,其結果分別為最大發光效率為20.3%與CIE值為(0666, 0.332)。
摘要(英) In the near future, a rapid growth is sighted in the applications of organic light-emitting devices (OLED) in diverse fields. The major reason behind such a rapid expansion is their ability to provide low-cost route for large-area light-emitting display technology. Their flexibility, low cost of fabrication and low operational voltages are some of the advantages that have attracted considerable interest of scientific as well as commercial community. Organic light-emitting diodes (OLEDs) can be used in displays to provide full viewing angle. Already the monochromatic OLEDs are being used for display panels in mobile phones and car stereos. However, to obtain the full-color display, the red, green, and blue colors with appropriate chromaticity are essential. Recently designed blue emitters are the most sought-after materials. But, due to high lowest unoccupied molecular orbital and large band gap energy, electrons migration from cathode to anode is difficult in case of blue emitters. The adequate modifications in conjugation may convert them into green or red emitters. However, the elaboration of conjugation is mostly associated with loss of quantum energy or luminescence intensity which is unfavorable for their applications in displays.
Combinatorial approach includes parallel synthesis and high-throughput screening of the compounds for desired properties. We herewith report a complete combinatorial strategy, solid-phase synthesis and rapid screening, to discover luminescent organometallic complexes for applications in organic light emitting diodes (OLEDs). A library of red phosphorescent Ir-complexes has been synthesized with an efficient synthetic strategy which includes the use of unique spacers and assembling of unreported resin-bound bis-cyclometalated Ir(III) μ-chloro-bridged dimers. The combinatorial screening was developed to search for high luminescent materials from the synthesized library of the resin-bound compounds. Bright light-emitting hits can be identified through mere manual observation of the brightness and determination of emission maxima of on-bead compounds. This screening technique was validated from photophysical characteristics of leads, cleaved products and the corresponding emitters. Using this method, two hits were identified and used as dopant emitters in the fabrication of electroluminescent (EL) devices. One of these devices possesses saturated red emission with a maximum external quantum efficiency of 20.3%, current efficiency of 16.6 cd/A and CIE coordinates at x = 0.666, y = 0.332.
關鍵字(中) ★ 組合式化學
★ 有機發光二極體
★ 固相合成
關鍵字(英) ★ organic light-emitting devices (OLED)
★ solid-phase synthesis
★ Combinatorial chemistry
論文目次 Abstract (Chinese) ………………………...…………………………..Ⅰ
Abstract (English) ……………………………………………………..Ⅱ
Contents ……………………………………………………..…………Ⅲ
List of Figures ………………………………………………………..Ⅴ
List of Tables …………………………………………………………Ⅷ
Chapter1 Introduction …………………………………………………...… 1
1.1 Basic principle of combinatorial technologies ………………….….1
1.2 A combinatorial approach to materials discovery ………………....4
1.2.1 Combinatorial discovery of fluorescent dye ……………..…..6
1.2.2 Combinatorial discovery of liquid crystal ………………...….8
1.2.3 Metal complex in solid support for scavenger and luminescent materials ……………………….…………………………..…9
1.3 Phosphorscent material for Organic Light-Emitting Diodes ..……….11
1.4 Motivation and purpose of this study ………………………….…20
1.4.1 The design of saturated red emitters …………………….….20
1.4.2 Accelerate emitters discovery through combinatorial rgano- metallic synthesis and screening methodology ………………..23
Chapter 2 Experimental Section …………………………………………31
2.1 Material and Experiment apparatus …………………….………..31
2.2 Synthesis …………………………………………………………32
2.2-1 Synthesis of liquid-phase …………………………….…….33
2.2-2 Synthesis of solid-phase for paralleled library ………………..44
2.2-3 Solution-phase parallel library for iridium complex material….52
Chapter 3 Results and Discussions …………………………………….…54
3.1 Characteristic properties …………………………..………………54
3.2 Fabrication of devices ……………………………..……………...59
3.2.1 Definition of internal quantum efficiency ………….………59
3.2.2 Results for electroluminescent devices ……………...…….61
Chapter 4 Conclusions………………………………………………….……..69
Chapter 5 Experimental procedure and data ………………………………70
5.1 Solution-phase synthesis ……………………………….…………70
5.2 Solid-phase synthesis ……………………………………………76
Spectrum Data ………………………………………..…………………..79
References …………………………………………….….………………..93
NMR Picture ……………………………………………..…….………99
參考文獻 [1] Boger, D. L.; Desharnais, J.; Capps, K., Angew. Chem. Int. Ed. 2003, 42, 4138.
[2] Corbett, A. D.; Cheeseman, J. D.; Kazlauskas, R. J.; Gleason, J. L., Angew. Chem. Int. Ed. 2004, 43, 2432.
[3] Dolle, R. E.; MacLeod, C.; Martinez-Teipel, B.; Barker, W.; Seida, P. R.; Herbertz, T., Angew. Chem. Int. Ed. 2005, 5830.
[4] Kassel, D. B., Chem. Rev. 2001, 101, 255-267.
[5] Thompson, L. A.; Ellman, J. A., Chem. Rev. 1996, 96, 555-600
[6] Dolle, R. E., J. Comb. Chem. 2005, 7, 739.
[7] (a) Smith, A. B.; Hirschmann, R.; Pasternak, A.; Akaishi, R.; Guzman, M. C.; Jones, D. R., J. Med. Chem. 1994, 37, 215-218.(b) Hirschmann, R., Angew. Chem., Int. Ed. Engl. 1991, 30, 1278-1301. (c) Kim, E. E.; Baker, C. T.; Dwyer, M. D.; Murcko, M. A.; Rao, B.G.; Tung, R. D.; Navia, M. A., J. Am. Chem. Soc. 1995, 117, 1181-1182.
[8] Schiedel, M.-S.; Briehn, C. A.; Bauerle, P., Angew. Chem. Int. Ed. 2001, 40, 4677.
[9] Briehn,C. A.; Schiedel, M. S.; Bonsen, E. M.; Schuhmann, W.; Bauerle, P., Angew. Chem. Int. Ed. 2001, 40, No. 24
[10] Haino, T.; Tanaka, M.; Ideta, K.; Kubo, K.; Mori, A.; Fukazawa, Y., Tetrahedron Lett. 2004, 45, 2277.
[11] Deeg, O.; Kirsch, P.; Pauluth, D.; Bäuerle, P., Chem. Commun., 2002, 2762–2763
[12] M. Hashimoto, A. Mori, H. Inoue, H. Nagamiya, T. Doi, T. Takahashi, Tetrahedron Letters, 2003, 1251–1254
[13] a) X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W. G. Wallace-Freedman, S.-W. Chen, P. G. Schultz, Science 1995, 268, 1738; b) B. Jandeleit, D. J. Schaefer, T. S. Powers, H.W. Turner,W. H.Weinberg, Angew. Chem. Int. Ed. 1999, 38, 2494; c) Q. Li, J.-S. Lee, C. Ha, C. B. Park, G. Yang, W. B. Gan, Y.-T. Chang, Angew. Chem. Int. Ed. 2004, 43, 6331; d) V. del Amo, A. P. McGlone, C. Foster, A. P. Davis, J. Comb. Chem. 2005, 7, 1.
[14] N. T. S. Phan, D. H. Browna, P. Styringa, Tetrahedron Letters, 2004, 45,7919.
[15] P. Lenaerts, K. Driesen, R. V. Deun, K. Binnemans, Chem. Mater. 2005, 17, 2148.
[16] G. Barbarella, L. Favaretto, G. Sotgiu, M. Zambianchi, A. Bongini, C. Arbizzani, M. Mastragostino, M. Anni, G. Gigli, R. Cingolani, J. Am. Chem. Soc . 2000, 122, 11971.
[17] H. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, Chem. Mater. 2003, 15, 1080.
[18] M. S. Lowry, W. R. Hudson, R. A. Pascal Jr., S. Bernhard, J. Am. Chem. Soc . 2004, 126,
14129.
[19] N. E. Leadbeater, J. Org. Chem. 2001, 66, 2168.
[20] J. A. Cassel, S. Leue, N. I. Gachkova, N. C. Kann, J. Org. Chem. 2002, 67, 9460.
[21] N. E. Leadbeater, E. L. Sharp, Organometallics. 2003, 22, 4167.
[22] S. van Zutphen, M. S. Robillard, G. A. van der Marel, H. S. Overkleeft, H. den Dulk, J. Brouwer, J. Reedijk, Chem. Commun. 2003, 634.
[23] Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4.
[24] (a) Bazan, G. C.; Moses, D.; Gong, X.; Ostrowski, J. C.; Heeger, A. J.; Liu, M. S.; Jen, A. K. Y. Adv. Mater. 2003, 15, 45. (b) Bazan, G. C.; Heeger, A. J.; Moses, D.; Gong, X.; Ostrowski, J. C. Adv. Mater. 2002, 14, 581.
[25] Grushin, V. V.; Wang, Y.; Petrov, V. A.; Herron, N.; LeCloux, D. D.; Marshall, W. J. Chem. Commun. 2001, 1494
[26] Lee, T. S.; Xie, H. Z.; Liu, M. W.; Wang, O. Y.; Zhang, X. H.; Lee, C. S.; Hung, L. S.; Teng, P. F.; Kwong, H. Z.; Che, C. M. Adv. Mater. 2001, 13, 1245.
[27] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304.
[28] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc. 2003, 125, 12971.
[29] Tao, Y. T.; Liu, R. S.; Su, Y. Y., Hung, H. L.; Li, C. L.; Chien, C. H.; Chou, P. T.; Datta, S. Adv. Mater. 2003, 15, 884.
[30] Cheng, C. H.; Duan, J. P, Sun, P. P. Adv. Mater. 2003, 15, 224.
[31] Liu, G.; Wang, S.; Lou, H.; Yu, G.; Lu, P.; Zhu, D. J. Mater. Chem. 2001, 11, 2971.
[32] B. Jandeleit, D. J. Schaefer, T. S. Powers, H. W. Turner, W. H. Weinberg, Angew. Chem. Int. Ed. 1999, 38, 2494.
[33] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, Appl. Phys. Lett. 2001, 78, 1622.
[34] D. Kolosov, V. Adamovich, P. Djurovich, M. E. Thompson, C. Adachi, J. Am. Chem. Soc . 2002, 124, 9945.
[35] S. Bernhard, X. Gao, G. G. Malliaras, H. D. Abruna, Adv. Mater. 2002, 14, 433.
[36] Y.-L. Tung, S.-W. Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J. Carty, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Mater. 2005, 17, 1059.
[37] J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2002, 41, 3055.
[38] G. Jones II, W. R. Jackson, C.-Y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294.
[39] C. W. Phoon, S. F. Oliver, C. Abell, Tetrahedron Letters 1998, 39, 7959.
[40] S. Hanessian, F. Xie, Tetrahedron Lett. 1998, 39, 733.
[41] A. Bianco, J. Furrer, D. Limal, G. Guichard, K. Elbayed, J. Raya, M. Piotto, J.-P. Briand, J. Comb. Chem. 2000, 2, 681.
[42] A. Kamal, G. S. K. Reddy, S. Raghavan, Bioorg. Med. Chem. Lett. 2001, 11, 387.
[43] P. A. Procopiou, K. Biggadike, A. F. English, R. M. Farrell, G. N. Hagger, A. P. Hancock, M. V. Haase, W. R. Irving, M. Sareen, M. A. Snowden, Y. E. Solanke, C. J. Tralau-Stewart, S. E. Walton, J. A. Wood, J. Med. Chem. 2001, 44, 602.
[44] M. R. Wiley, S. D. Lepore, J. Org. Chem. 2000, 65, 2924.
[45] B. Gardner, A. J. S. Kanagasooriam, R. M. Smyth, A. Williams, J. Org. Chem. 1994, 59, 6245.
[46] S. J. Lee, Y. Konishi, D. T. Yu, T. A. Miskowski, C. M. Riviello, O. T. Macina, M. R. Frierson, K. Kondo, M. Sugitani, J. C. Sircar, K. M. Blazejewski, J. Med. Chem. 1995, 38, 3547.
[47] R. J. Griffin, S. Srinivasan, K. Bowman, A. H. Calvert, N. J. Curtin, D. R. Newell, L. C. Pemberton, B. T. Golding, J. Med. Chem. 1998, 41, 5247.
[48] D. P. Rotella, Z. Sun, Y. Zhu, J. Krupinski, R. Pongrac, L. Seliger, D. Normandin, J. E. Macor, J. Med. Chem. 2000, 43, 5037.
[49] J. Hanusek, M. Sedlak, P. Simunek, V. Sterba, Eur. J. Org. Chem. 2002, 1855.
[50] R. Y. Ning, R. I. Fryer, P. B. Madan, B. C. Sluboski, J. Org. Chem. 1976, 41, 2724.
[51] D. J. Kertesz, M. Marx, J. Org. Chem. 1986, 51, 2315.
[52] S. Giorgi-Renault, J. Renault, P. Gebel-Servolles, M. Baron, C. Paoletti, S. Cros, M.-C. Bissery, F. Lavelle, G. Atassi, J. Med. Chem. 1991, 34, 38.
[53] S. Ananthan, S. D. Clayton, S. E. Ealick, G. Wong, G. E. Evoniuk, P. Skolnick, J. Med. Chem. 1993, 36, 479.
[54] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am. Chem. Soc. 2003, 125, 636.
[55] M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, M. Graetzel, J. Am. Chem. Soc. 2003, 125, 8790.
[56] I. R. Laskar, T.-M. Chen, Chem. Mater. 2004, 16, 111.
[57] F.-C. Chen, Y. Yang, M. E. Thompson, J. Kido, Appl. Phys. Lett. 2002, 80, 2308.
[58] S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, M. E. Thompson, J. Appl. Phys. 2002, 92, 1570.
指導教授 李文仁(Wen-Ren Li) 審核日期 2007-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明