博碩士論文 90246009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.145.174.253
姓名 羅仕守(Shih-Shou Lo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 新型中空光波導研製與應用
(Fabrication and application of novel hollow optical waveguide)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 動態波長分配技術在乙太被動光纖網路的應用★ 禁止頻帶材料的光學與聲波特性研究
★ 漸變式光子晶體透鏡研究★ 光子晶體波導光束直進之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這個研究中,我們使用晶片鍵合的方法去製作一個以二氧化矽(SiO2)與矽(Si)薄膜組成的全方向反射鏡,利用這個全方位反射鏡在半導體基材中製作出中空型光波導,我們簡稱SHOW-ODR。相關薄膜參數為矽折射率(3.48)與二氧化矽折射率(1.48),結構中二氧化矽薄膜與矽薄膜的厚度分別為0.258微米與0.111微米. SHOW-ODR的形成是透過稀釋的氫氧化鉀(KOH)溶液,藉由非晶系矽晶片鍵合的動作,把兩片在矽晶片上製作出相同的全方向反射鏡鍵合在一起。從穿透光譜量測值中顯示SHOW-ODR結構對於橫向電波(TE)模態與橫向磁波IS模態的傳輸損耗分別為1.0±0.3(dB/cm)與1.0±0.4(dB/cm),結構上具有低傳輸損耗與低偏振相關的特性。
此外, 利用SHOW-ODR結構,展示分光比一比一的中空型多模干涉(MMI)分光器,在這中空MMI分光器結構前端,我們設計一個橫向的漏斗(Taper),做為改善SHOW-ODR與單模光纖(SMF)的耦合效率。最後結果顯示中空MMI具有弱偏振相關性,同時由於核心(core)折射率較低,也使元件的長度比傳統介電值波導所製作的MMI元件還要短。因此我們相信SHOW-ODR的應用很快就會到來。
摘要(英) In this study, a wafer-bonding approach was used to fabricate a semiconductor hollow optical waveguide formed from an omni-directional reflector (SHOW-ODR). The thin-film parameters are n1(Is) =3.48 and n2(SiO2)=1.48. The thickness of the Is and SiO2 layers was one quarter of the wavelength of 1.55?m in the materials 0.111?m and 0.258?m, respectively. The SHOW-ODR is formed by amorphous-Is wafer bonding through dilute KOH solvent. The measured transmission spectra indicate propagation losses of around 1.0±0.3 and 1.0±0.4dB/cm in TE and TM modes, respectively. The propagation loss was low and the dependence on polarization was weak.
Additionally, SHOW-ODR is used to demonstrate an MMI power splitter with a power-splitting ratio of 1:1. A lateral taper structure was introduced between the SHOW-ODR and the single-mode fiber (SMF) to increase the coupling efficiency and the tolerance of misalignment. The hollow MMI coupler exhibits a weak dependence on polarization in TE and TM modes. Moreover, the coupler is shorter than the conventional dielectric MMI because the core index is lower. We assert that the age of the applications of SHOW-ODR in OIC will come soon.
關鍵字(中) ★ 光子晶體
★ 波導
★ 晶片鍵合
★ 輻射模態
★ 多層膜
★ 薄膜
★ 耦合元件
★ 多膜干涉
關鍵字(英) ★ waveguides
★ photonic crystals
★ wafer bonding
★ radiation mode
★ multilayer
★ thin-film
★ coupler
★ multimode interference
論文目次 Contents
Abstract
Acknowledgment
Contents
List of Figures
List of Tables
Chapter I、Introduction 1
1.1Optical Waveguide 1
1.2 Photonic Crystals 4
1.3 Wafer Bonding Technology 7
1.4 Motivation 8
1.5 Scope of the Dissertation 14
Chapter II、Theory 15
2.1 Bloch Wave and Band Structures 15
2.2 Transfer Matrix Method 20
2.3 Wave Equation Analysis in the SHOW-ODR 26
2.3.1Field Distribution in the Boundary of SHOW-ODR 30
2.4 Summary 31
Chapter III、Design and Simulation 33
3.1 Si/SiO2 ODR 33
3.1.1Band-Structure of Si/SiO2 ODR 33
3.1.2 Reflectance Spectra of Si/SiO2 ODR 36
3.2 Mode of SHOW-ODR 38
3.3 Summary 41
Chapter IV、Fabrication 43
4.1 Photolithography and Thin-Film Deposition 44
4.2 Amorphous Silicon Wafer Bonding 45
4.3 Polishing 49
4.4 Summary 51
Chapter V、Measurement 52
5.1 Reflection Spectra of Si/SiO2 ODR 52
5.2 Optical Image of Output Facet 56
5.3 Losses of SHOW-ODR 58
5.4 Coupling Efficiency 63
5.5 Summary 69
Chapter VI、Application 71
6.1 Multimode Inference 71
6.1.1Theory 73
6.1.2 Hollow-MMI Coupler Design 74
6.1.3 Fabrication of MMI Coupler 77
6.1.4Measurement and Result 78
6.2 Summary 80
Chapter VII、Conclusions and Future Works 84
7.1 Conclusions 84
7.2 Future Works 86
Reference 90
參考文獻 1. Donald, G. Baker: Monomode Fiber Design. Van Nostrand Reinhold, New York, (1987)
2. Gloge, D.,Marcatili and E. A. “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. ,52, pp. 1563-1578 (1973)
3. Green, Paul E. Jr, “Fiber optics Networks,” Prentice-Hall, pp. 260, (1993)
4. H. Nishihara, M. Haruna and T. Suhara, “Optical integrated circuits”, McGraw-Hill, New York (19887)
5. S. Sheard, T. Suhara and H. Nishihara, “Integrated-optical temperature sensor,” Appl. Phys. Lett., 41, pp.134-136 (1982)
6. E. Griese, D. Krabe, E. Strake,“Electrical-optical printed circuit boards:Technology-design-modelling,” in interconnects in VLSI design, H. Grabinski(ed), Kluwer Publisher, Boston, pp.420 (2000)
7. E. Griese, “A high-performance hybrid electrocal-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Package, 24, pp. 375-383 (2001)
8. E. Yablonovitch,“Inhibited spontaneous emission in solid state physics and electronics”, Phys. Rev. Lett., 58, pp.2059-2062 (1987)
9. S. John, “Strong localization of photons in certain disordered dielectric superlattics,” Phys. Rev. Lett., 58, pp.2486-2488 (1987)
10. K. Yoshino, Y.Shimoda, Y. Kawagishu, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal.” Appl. Phys. Lett., 75, pp.932-934 (1999)
11. J. G. Fleming and Shawn-Yu Lin, “Three-dimensional photonic crystal with a stop band f rom 1.35 to 1.95 ?m” Opt. Lett., 24, pp.49-51 (1999)
12. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer and T. P. Pearsall, “Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.” Appl. Phys. Lett., 77, pp. 1973-1975 (2000).
13. R. K. Lee, O. J. Painter, B. Kitzke, A. Scherer and A. Yariv, “Photonic band gap defect lasers,” Electron. Lett., 35, pp. 569-570 (1999)
14. J. K. Hwang, H. Y. Rue, D. S. Song, I, Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal laser at 1.6 ?m,” IEEE Photon. Technol. Lett. 12, pp. 1295-1297 (2000)
15. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz,“Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett., 67, pp. 2017-2019 (1991)
16. J. S. Jensen, O. Sigmund, L. H. and M. Kristensen, “Topology Design and Fabrication of an Efficient Double 90(degree) Photonic Crystal Waveguide Bend,” IEEE, Photon. Tech. Lett., 17, pp. 1202-1204 (2005)
17. S. Kim and G. P. Nordin, J. Jiang and J. Cai, “High Efficiency 90(degree) Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE, Photon. Tech. Lett., 16, pp. 1846-1848 (2005)
18. C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, Ch. K Lin, W. Y Chiu, and Yi-Jen Chan,“Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Opt. Express, 13, pp. 38-43, (2005)
19. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity”J. Opt. Soc. Am. B, 19, pp.2052-2059(2002)
20. J. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator, ” Opt. Lett., 24, pp. 847-849 (1999)
21. A. Yariv, P. Yeh, “Optical waves in crystals,” Wiley, New York, Chap. 6 (1984)
22. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42, pp806-810 (1952)
23. A. V. Tikhonravov, P. W. Baumeister and K. V. Popov,“Phase properties of multilayers,” Appl. Opt. 36, pp. 4382-4388 (1997)
24. A. F. Turner and P. W. Baumeister, “Multilayer mirrors with high reflectance over an extended spectral region,” Appl. Opt. 2 pp.247-254 (1966)
25. J. T. Cox, “Special type of double-layer antireflection coefficient for infrared optical materials with high refractive index,” J. Opt. Soc. Am. 51, pp1406-1408 (1961)
26. R. W. Staley and K. L. Andrew, “Use of dielectric coating in absolute wavelength measurements with a Fabry-Perot interferometer,” J. Opt. Soc. Am. 54, pp. 625-627 (1964)
27. S. Ajith Kumar, C. L. Nagendra and G. K. M. Thutupalli, “Near-infrared bandpass filters from Si/SiO2 multilayer coating.” Opt. Eng., 38, pp. 368-380 (1999)
28. Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas., “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998)
29. Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett., 82, pp. 2770-2772 (2003).
30. H. Y. Lee, H. Makino, T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett., 81, pp. 4502-4504 (2002)
31. M. Alexe and U. Gosele, “Wafer Bonding- Applicationand and Technology,” 1st ed. Berlin, Germany: Springer-Verlag, pp. 13-51 (2004)
32. U. Gosele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad and K. Scheerschimidt, “Self-propagating room-temperature silicon wafer bonding in ultrahigh vacuum,” Appl. Phys. Lett., 67, pp. 3614-3616 (1995)
33. Q. Y. Tong, E. Schmidt,U. Gosele and M. Reiche, “Hydrophobic silicon wafer bonding” Appl. Phys. Lett., 64, pp. 625-627 (1994)
34. Thomas R. Anthony, “Dielectric isolation of silicon by anodic bonding,” J. Appl. Phys., 58, pp. 1240-1247 (1985)
35. J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, pp. 78-80 (1986)
36. A. R. Mirza and A. A. Ayon, “The success of MEMS manufacturing depends on silicon wafer -bonding techniques and the evolution of new bond-specific equipment” Solid State Technol., 42, pp. 73-80 (1998).
37. B. Waidhas, M. Boettcher and E. Meusel, “3D packageing technologies for Microsystems,” in Microsystem technology 96, VDE-Verlag, Potsdam pp. 349-356 (1996)
38. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers” Bell Syst. Tech. J. 43, pp. 1783-1809 (1964)
39. E. Garmire, T. McMahon and M. Bass, “Propagation of infrared light in flexible hollow waveguide,” Appl. Opt. Vol. 15, pp. 145-150 (1976)
40. P. Yeh, A. Yariv and E. Marom, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am., 68, pp.1196-1202 (1978)
41. N. J. Doran and K. J. Bulow, “Cylindrical Bragg fibers: A design and feasibility study for optical communications” J. Lightwave Technol., LT-1, pp. 588 (1983)
42. C. M. de sterke and I. M. Bassett, “Differential losses in Bragg fibers,” J. Appl. Phys., 76, pp. 680-682 (1994)
43. V. K. Kiseliov and T. M. Kushta,“A Spherical Scatterer Inside a Circular Hollow Dielectric Waveguide,” International J. Infrared and Millimeter Wave,18, pp. 151-154 (1997)
44. T. Miura, F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys., 43, pp. L21-L23 (2004)
45. A. B. Fedotov, A. N. Naumov, D. A. Sidorov-Biryukov, N. V. Chigarev, A. M. Zheltikov, J. W. Haus, R. B. Miles, “Photonic-bandgap planar hollow waveguide,” J. Opt. Soc. Am. B ,19, pp.1162-1168 (2002).
46. Nibbering, E. T. J.,Duhr, O. and Kom. G. “Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide.” Opt. Lett., 22, pp.1335-1337 (1997).
47. Tempea, Gabriel, Brabec and Thomas, “Theory of self-focusing in hollow waveguide,” Opt. Lett., 23, pp.762-764 (1998)
48. Jenkins, Devereux and Blockey,“Hollow waveguide integrated optics: A novel approach to 10mm laser radar,” J. Modern Opt., 45, pp. 1613-1628(1998)
49. Karasawa Noaki, Morita Ryuji, Xu Lin, Shigekawa Hidemi and Yamashita Mikio, “Theory of ultrabroadband optical pluse generation by induced phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B, 16 pp. 662-668(1999)
50. Zheltikv, Koroteev and Naumov,“Self-and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide.” J. Exp. and Theoretical Phys., 88, pp. 857-856 (1999)
51. Jyisy Yang, jhy-Woei Her, Sheng-His Chen,“Development of an Infrared hollow waveguide as a Sensing Device for Detection of Organic Compounds in Aqueous Solution.” Analytical Chemistry-Columbus, 71, pp. 3740-3746 (1999)
52. Shunichi Sato, Hiroshi Ashida, Tsunenori Arai, Yi-Wei Shi, Matsuura Yuji and Mitsunbu Miyagi, “Vacuum cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG Laser pulses and its application to biological tissue ablation.” Opt. Lett., 25, pp. 49-51(2000)
53. Naoki Karasawa, Ryuji Morita, Hidemi Shigekawa and Mikio Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide.” Opt. Lett., 25, pp. 183-185 (2000)
54. D. Homoelle and Alexander L. Gaeta, “Nonlinear propagation dynamics of ultrashort pulse in a hollow waveguide.” Opt. Lett., 25, pp. 761-763 (2000)
55. Jyisy Yang and Chin-Peng Tsui,“Detection of Chlorinated aromatic amines in aqueous solution based on an infrared hollow waveguide sampler.” Analysicta Chimica Acta, 442, pp. 267-276 (2001)
56. Naohi Karasawa, Ryuji Morita, Hidemi Shigekawa and Yamashita Mikio,“Characteristics of the oscillatory spectrum due to only induced-phase modulation in an argon filled hollow waveguide accompanied with intense self-phase modulation.” Opt. Commun., 197, pp. 475-480 (2001)
57. Jyisy Yang and Chung-Jay Lee, “Development of the Infrared hollow waveguide sampler for the detection of Chlorophenols in Aqueous solution.” IEEE Transaction on Visulization and computer Graphics 8, pp. 163-172(2002)
58. D. Homelle, Alexander L. Gaeta, V. Yanovsky and G. Mourou, “Pulse constrat enhancement of high-energy pulses by use of a gas-filled hollow waveguide.” Opt. Lett., 27, pp. 1646-1648 (2002)
59. Toru Miura, Fumio Koyama, Akihiro Matsutani and Takahiro Sakaguchi,“Novel variable optical attenuator based on three-dimensional hollow waveguide.” Jpn. J. Appl. Phys., 42, pp. 3477-3478 (2003)
60. A. Bendada, A. Derdouri, M. Lamontagne and Y. Simard, “Investigation of thermal contact resistance in injection molding using a hollow waveguide pyrometer and a two thermocouple probe.” Rev. Sci. Instruments, 74, pp. 5282-5288 (2003)
61. C. Charlton, F. Melas, A. Inberg, N. Croitoru and B. Mizaikoff,“ Hollow waveguide gas sensing with room temperature quantum cascade lasers,” IEE Proceeding-optoelectronic, 150, pp. 306-309 (2003)
62. Chengbin Jin, Xiujian Zhao, Haizheng Tao, Xina Wang and Aiyun Liu,“Study of the synthesis of SiO2-TiO2-GeO2 gel glass for hollow waveguide application in CO2 laser delivery.” J. Mater. Chem., 13, pp. 3066-3071 (2003)
63. Gibson, J. Daniel James A Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic band gap structure.” J. Appl. Phys. 95, 3895-3900 (2004)
64. Sakurai, Yasuki, Koyama and Fumio,“Proposal of tunabl hollow waveguide distributed Bragg reflectors.” Jpn. J. Appl. Phys., 43, pp. L631(2004)
65. Helena Jelinkova, Michal Nemec, Jan Sulc, Pavel Cerny, Mitsunobu Miyagi and Yuji Matsuura, “Hollow waveguide delivery systems for laser technological application,” Progress in Quan. Electron., 28, pp. 145-164 (2004)
66. Yasuki Sakurai, Toru Miura and Fumio Koyama,“Air core Thickness dependence of propagation loss of slab hollow waveguide.” Jpn. J. Appl. Phys., 43, pp. L1091 (2004)
67. Sakurai, Yasuki, Koyama, Matsutani Akihiro and Fumio, “Tunable hollow waveguide Bragg grating with low-temperature dependence.” Appl. Phys. Lett. 86, pp. 71111-71113 (2005)
68. S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, “Microfluidic sensor based based on integrated optical hollow waveguide,” Opt. Lett., 29, pp. 1894-1896 (2004)
69. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature, 420, pp. 650-653 (1997).
70. Hyun-Yong Lee, Sung-June Cho, Gi-Yeon Nam, Wook-Hyun Lee, Takeshi Baba, Hsiao Makino and Takafumi Yao, “Multiple-wavelength-transmission filters based on Si-SiO2 one-dimensional photonic crystals.” J. Appl. Phys., 100, pp. 103111-103113 (2005)
71. C. C. Chen, P. G. Luan, J. Y. Chang, H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003, 2 , pp. 610-615 (2003)
72. R. De L. Kronig and W. G. Penney, Proc. Roy. Cos. (London) 139, pp. 499-508 (1931)
73. A. Yariv and P. Yeh, “Optical Waves in Crystals.” Wiley, New York pp. 171-172 (1984)
74. F. Abeles, J. Phys. (France) 11, pp. 310 (1950)
75. R. E. Collin, “Field theory of guided waveguides,” pp. 181-184, (1991)
76. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quan. Electron., 28, 1689-1700 (1992)
77. W. Huang, R. M. Shubair, A. Nathan, and Y. L. Chow, “The modal characteristics of ARROW structure,” J. Lightwave Technol., 10, 1015-1022 (1992)
78. D. Marcuse, “Theory of dielectric optical waveguide,” 2nd ed., San Diego: Academic Press, pp. 49 (1999)
79. M. H. Sheng and H. W. Cheng, “Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides,” Appl. Opt.,44, pp.751-763 (2005)
80. C. Kevin, S. Andrew, H. W. Laun, D. Lin and L. Kimerling, “SiO2/ TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett., 75, pp.3805-3807 (1999)
81. D.N. Chigrin, A. V. Lavrienko, D. A. Yarotsky and S. V. Gaponenko, “Observation of total omni-directional reflector from a one-dimensional dielectric lattice,” Appl. Phys. A, 68, pp. 25-28 (1999)
82. B. Temelkuran, E. L. Thomas, J. D. Jonnopoulos and Y. Fink,“Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity,” Opt. Lett., 26, pp. 1370-1372 (2001)
83. R. Syms and J. Cozens, “Optical Guided Waves and Device,” Mc Graw, Hill, (1992)
84. J. P. Berenger, “A perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., 114, pp.185-187 (1994)
85. M. Madou, “Fundamentals of Microfabrication,” CRC Press, Boca Raton, London, New York, Washington D.C., (1997)
86. E. Elwenspoek, H. Jansen, “Silicon micromaching,” Cambridge University Press, (1998)
87. W. Mens, J. Mohr and O. Paul, “ Microsystem Technology,” Wiley-Vch Verlag GmbH, pp. 146 (2001)
88. C. Gui, R. E. Oosterbroek and J. W. Berenschot, “Selective wafer bonding by surface roughness control,” J. Electochem. Soc., 148, pp.G225-G228 (2001)
89. Q.Y. Tong, Q. Gan, G. Hudson and G. Fountain, “Low-temperature hydrophobic silicon wafer bonding,” Appl. Phys. Lett., 83, pp.4767-4769 (2003)
90. Q. Y. Tong, E. Schmidt and U. Gosele, “Hydrophobic silicon wafer bonding,” Appl. Phys. Lett., 64, pp. 625-627 (2003)
91. S. S. Lo, H. K. Chiu, C. C. Chen, S. C. Hsu and C. Y. Liu,“Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE, Photonic Technol. Lett., 12,
92. H. Seidel, L. Cseppregi, A. Heuberger and H. Baummgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions.”J. Electrochem. Soc., 137, pp.3612-3620 (1990)
93. H. Seidel, L. Cseppregi, A. Heuberger and H. Baummgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions.” J. Electrochem. Soc., 137, pp.3626-3633 (1990)
94. E. Schwidefsky, “Increase of refractive index of silicon films by dangling bonds,” Thin Solid Films, 18, pp. 45 (1973)
95. G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C, 10, pp.467-470 (1997)
96. J. Stone and L. W. Stulz, “Reflectance, transmittance and loss spectra of multilayer Si/SiO2 thin film mirrors and antireflection coatings,” Appl. Opt., 29, pp. 583-588(1990)
97. M. Patrini, M. Galli, M. Belotti, L.C. Andreani, G. Guizzetti, G. Pucker. A. Lui. P. Bellutti, L. Pavesi. Optical response of one-dimensional (Si/SiO2)m photonic crystals. J Appl. Phys., 92, pp. 1816-1820 (2002).
98. R. G. Hunsperger, A. Yariv, A. Lee, “Parallel end-butt coupling for optical integrated circuits,” Appl. Opt., 16, pp. 1026- (1977)
99. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE, J. Quan. Electron., 9 , pp. 919-934 (1973)
100. T. Tamir,“Beam and Waveguide Couplers in Integrated Optics,” 2nd. Topic Appl. Phys., 7, pp. 102-107 (1979)
101. T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers” Appl. Phys. Lett., 29, pp. 303-305 (1976)
102. M. Shams, D. Botes, S. Wang, “Preferential chemical etching of blazed grating in (110)-oriented GaAs” Opt. Lett., 4, pp. 96-98 (1979)
103. A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett., 36, pp. 523-525 (1980)
104. Norio Kashima, “Passive optical comments for optical fiber transmission,” Artech House (1995)
105. O. Hannaizumi, M. Miyagi, M. Minakata, S. Kawakami,“Attenna coupled Y junction in 3-dimensional dielectric waveguide,” European Conf. on Optical Communications ECOC, 179 (1985)
106. P. K. Tien, R. J. Martin , “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett., 18, pp. 398-400(1974)
107. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin and S. R. Forrest, “An Asymmetric Twin-Waveguide High-Bandwidth Photodiode Using a Lateral Taper Coupler” IEEE, Photon. Tech. Lett., 13, pp. 845-847 (2001)
108. V. S. Mottonen,“Wideband Coplanar Waveguide -to-Rectangular Waveguide Transition Using Fin-Line Taper,” IEEE, Micro. and Wireless Compon. Lett., 15, pp. 119-121 (2005)
109. L. L. Buhl, “Optical losses in metal/SiO2-clad Ti:LiNbO3 waveguide,” Electron. Lett., 19, pp. 659-661 (1983)
110. G. P. Bava, R. Orta, “Optical frequency mixing in planar waveguides: influence of crystal orientation,” Appl. Phys. A26, pp. 185-189 (1981)
111. J. L. Jackel, V. Ramaswamy, S. P. Lyman, “ Elimination of out-duffused surface guiding in titanium diffused LiNbO3” Appl. Phys. Lett., 38, pp. 509-511 (1981)
112. C. Themistos and B. M. Azizur Raham, “Design issues of a multimode interference-based 3-dB splitter,” Appl. Opt. Vol. 41. pp.7037-7044 (2002)
113. M. N. Armenise, M. Desario, “ Optical rectangular waveguide in titanium diffused niobate having its optoical axis in the transverse plane,” J. Opt. Soc. Am., 72, pp. 1514-1516 (1982)
114. L. Soldano, F. Veerman, M. Yasu and Y. Hibino,“Multimode interference coupler,” Proc. Integrated Photonic Research Topical Meeting, Monterey, CA, April, Post TuD1 (1991)
115. E. Pennings, R. Deri, A. Scherer, R. Bhat, T. Hayes, N. Andreadakis, M. Smit and R. Hawkins, “Ultra-compact, low-loss directional coupler structure on InP for monolithic integration, ” Proc. Integrated Photonics Research Topical Meeting, Monterey, CA. April, Post-dealine PD2 (1991)
116. M. Mamsuripur, “The Talbot effect,” Opt. & Photonic News, 43. pp. 42-47, (1997)
117. L. Soldano and E. Pennings, “Optical Multi-Mode Interference Devices Based on self-imaging Principle and Application,” J. Lightwave Technol., 13, pp 615-627
118. A. Yehia, K. Madkour, H. Maaty and D. Khalil, “Multiple-Imaging in 2-D MMI silicon hollow waveguide,” IEEE, Photon. Technol. Lett., 16, pp. 2072-2074 (2004)
119. Martin T. Hill, X. J. Leijtens, G. D. Khoe and M. K. Smit, “ Optimizing Imbalance and Loss in 2×2 3-dB Multimode Interference Couplers via Access Waveguide Width.” IEEE, J. Lightwave Technol., 21, pp.2305-2313 (2003)
120. S. S. Lo, M. S. Wang and C. C. Chen, “Semiconductor hollow optical waveguide formed by omni-directional reflector” Opt. Exp., 12, pp. 6590- (2004)
121. C. Themistos and B. M. A. Rahman, “Design issues of multimode interference-based 3-dB splitter,” Appl. Opt., 41,pp.7037-7044 (2002)
122. P. Trinh, S. Yegnanarayanan and B. Jalali, “5x9 Integrated Optical Star Coupler in Slicon-on-Insulator Technology,” IEEE Photonic Technol. Lett., 8, pp.794-796 (1996)
123. J. P. Dowling, M. Scalora, M. J. Bloemer and C. M. Bowden, “A photonic band edge laser: A new approach to gain enhancement”, J. Appl. Phys., 75, pp.1896-1899 (1996)
124. L, Florescu, K. Busch and S. John, “Semiclassical theory of lasing in photonic crystals”, J. Opt. Soc. Am. B, 19, pp.2215-2223 (2002)
125. M. L. Povinelli, M. lbanescu, S. G. Johnson and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional reflector waveguide,” Appl. Phys. Lett., 85, pp. 1466-1468 (2004)
126. S. Suzuki, M. Yanagisawa, Y. Hibino and K. Oda, “High-density integrated plannar lightwave circuit using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol., 12, pp.790-796, (1994)
127. P. Dumais, C. L. Callender, J. P. Noad and C. J. Ledderhof, “Silica-on Silicon Optical Sensor Based on Integrated Waveguide and Microchannels,” IEEE, Photonic Technol. Lett., 17,pp.441-443 (2005)
128. R. Krahenbuhl, R. Kyburz, W. Vogt, M. Bachmann, T. Brenner, E. Gini and H. Melchior, “ Low-Loss Polarization-Insensitive InP-InGaAsP Optical Space Switches for Fiber Optical Communication,” IEEE Photonic Technol. Lett., 8, pp. 632-634 (1996)
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2005-12-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明