博碩士論文 90322024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:44.201.95.84
姓名 李信毅(Hsin-I Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 地震規模修正因子之探討
(Magnitude Scaling Factor)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 鯉魚潭水庫大壩受震反應分析
★ 全機率土壤液化評估法之研究★ 基樁軸向承載之依時行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之主要目的在於探討影響等量作用週數之因子,最後提出地震規模修正因子(MSF)之初步建議值。等量作用週數乃依據實驗室所得代表性液化權重曲線與強震紀錄而求得,其主要觀念為將地震所造成之不規則反覆剪應力取某一平均應力τave後,依據權重流程轉為等量作用週數Neq。
由於台灣地區地質構造複雜,且地形起伏變化大,因此地震波波形、振幅與延時隨地震規模、波傳路徑、測站所在局部土壤條件及震央距等因素而有所不同,故本研究針對這些影響等量作用週數Neq計算之因素作一系列之探討,以瞭解台灣地區地震規模ML與等量作用週數Neq之統計關係。最後,依據所選用之權重曲線提出地震規模修正因子之初步建議值,結果顯示權重曲線之斜率對於MSF之評估結果影響甚大。
摘要(英) In this research, we study the influence factors on the equivalent number of uniform stress cycles Neq and propose magnitude scaling factors for liquefaction analysis. Based on the cyclic strength weighting curve and acceleration history, the equivalent number of uniform stress cycles were determined by a standard weighting procedure. The weighting procedure can convert an irregular time history of earthquake-induced cyclic stresses to a series of uniform cycles with average shear stress τave.
The geological structure and terrain is complex in Taiwan, therefore, we study the influence factors on the equivalent number of uniform stress cycles, which include the waveform(amplitude and duration of acceleration history), magnitude, the path of wave propagation, site condition and epicentral distance. When the relationship of earthquake magnitude and equivalent number of uniform stress cycles was established, the magnitude scaling factor for liquefaction analysis were derived from the weighting curve. The results show that the slope of weighting curve is the important factor for influencing the magnitude scaling factor.
關鍵字(中) ★ 地震規模修正因子
★ 權重曲線
★ 權重流程
★ 等量作用週數
關鍵字(英) ★ Magnitude scaling factor
★ Weighting curve
★ Weighting procedure
★ Equivalent number of uniform stress cycles
論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 論文內容 3
第二章 文獻回顧 4
2.1前言 4
2.2等量反覆均勻應力作用週數之觀念 5
2.3等量反覆均勻應力作用週數之推導 6
2.3.1剪應歷歷時之正規化 6
2.3.2權重曲線(Weighting curve) 7
2.3.3加權轉換因素值(Conversion factor) 8
2.3.4等量反覆均勻應力作用週數之計算 9
2.4 Seed and Idriss 建議之規模修正因子 11
2.4.1地震規模與等量作用週數之關係 11
2.4.2地震規模修正因子之求得 11
2.5影響等量作用週數之因子 12
2.5.1權重曲線之影響 12
2.5.2土層深度之影響 13
2.5.3地震規模之影響 13
2.5.4選擇之平均反覆剪應力 14
2.5.5隨測站場址與距震央遠近之影響 14
2.6其他學者建議規模修正因子之比較 15
2.6.1 Revised Idriss Magnitude Scaling Factors 15
2.6.2 Ambraseys Magnitude Scaling Factors 15
2.6.3 Arrango Magnitude Scaling Factors 16
2.6.4 Andrus and Stokoe Magnitude Scaling Factors 18
2.6.5 Youd and Noble Magnitude Scaling Factor 19
2.6.6美國地震工程研究中心(NCEER)之建議值 19
2.7應力折減因子之探討 20
第三章 剪應力與加速度及速度歷時相關性之驗證 22
3.1 分析方法 22
3.2 分析結果與討論 25
第四章 分析結果與討論 27
4.1 權重液化曲線 27
4.1.1 與國外土樣之比較 30
4.2 影響等量作用週數之因子 30
4.2.1 選用之平均反覆應力與地震波波形之影響 30
4.2.2 權重液化曲線斜率之影響 32
4.2.3 隨土層深度之影響 32
4.2.4 隨震央距之變化 34
4.2.5 場址效應之探討 35
4.3 地震規模修正因子(MSF)之探討 37
4.3.1 資料來源 37
4.3.2 分析方法 37
4.3.3 分析結果與討論 38
4.3.4 地震規模修正因子之比較 39
4.4 應力折減因子之探討 40
4.4.1 剪力波速對rd之影響 41
4.4.2 PGA對rd之影響 42
4.4.3 地震延時對rd之影響 42
4.4.4 均值土層rd值之探討 43
第五章 結論與建議 45
5.1 結論 45
5.2 建議 46
參考文獻 222
附錄A 國內外砂性土壤之試驗相關資料及液化曲線斜率 226
參考文獻 1.Annaki, M., and Lee, K.L., “Equivalent uniform cycle concept for soil
dynamics,” Journal of Geotechnical Engineering Division, ASCE, Vol. 106,
No.6, pp. 549-564 (1977).
2.Andrus, R.D., and Stokoe, K.H.,Ⅱ “Liquefaction resistance based on shear
wave velocity,” Proc., NCEER Workshop on Evaluation of Liquefaction
Resistance of Soils, National Center for Earthquake Engineering Research,
State Univ. of New York at Buffalo, pp. 89-128 (1997).
3.Arango, I.,“Magnitude scaling factors for soil liquefaction evaluations,”
Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 11, pp. 929-936
(1996).
4.Ambraseys, N.N., “Engineering Seismology,” Earthquake Engineering and
Structural Dynamics, Vol. 17, No. 1, pp.1-105 (1988).
5.Boulanger, R.W., and Seed, R.B., “Liquefaction of sand under bidirectional
monotonic and cyclic loading,” Journal of Geotechnical Engineering, ASCE,
Vol. 121, No. 12, pp. 870-878 (1995).
6.DeAlba, P., Chan, C.K., and Seed, H.B., “Determination of soil liquefaction
characteristics by large-scale laboratory tests,” EERC 75-14, Earthquake
Engineering Research Center, University of California, Berkeley (1975).
7.Ishihara, K., Silver, M.L., and Kitagawa, H., “Cyclic strengths of
undisturbed sands obtained by large diameter sampling,” Soils and
Foundations, Vol. 18, No. 4, pp.61-76(1978).
8.Ishihara, K., Silver, M.L., and Kitagawa, H., “Cyclic strengths of
undisturbed sands obtained by a piston sampler,” Soils and Foundations,
Vol.19, No. 3, pp.61-76(1979).
9.Ishihara, K., Kawase, Y., and Nakajima, M., “Liquefaction characteristics of
sand deposits at an oil tank site during the 1978 Miyagiken-Oki earthquake,”
Soils and Foundations, Vol. 20, No. 2, pp.97-111(1980).
10.Ishihara, K., Perlea, V., “Liquefaction-Associated ground damage during
the Vrancea earthquake of March 4, 1977,” Soils and Foundations, Vol. 24,
No. 1, pp.90-112(1984).
11.Ishihara, K., Muroi T., and Towhata, I., “In-Situ pore water pressure and
ground motions during the 1987 Chiba-Toho-Oki earthquake,” Soils and
Foundations, Vol. 29, No. 4, pp.75-90(1989).
12.Liu, A.H., Stewart, J.P., Abrahamson, N.A., and Moriwaki, Y., “Equivalent
number of uniform stress cycles for soil liquefaction analysis,” Journal of
Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 12, pp.
1017-1026 (2001).
13.Lee, K.L., and Chan K., ”Number of equivalent significant cycles in strong
motion Earthquakes,” Proce. of the “The International Conference on
Microzonation for Safer Construction Research and Application,” Seattle,
Washington, Vol. 2, pp. 609-627 (1972).
14.Mulilis, J.P., Arulanandan, K., Mitchell, J.K., Chan, C.K., and Seed,
H.B., ”Effects of sample preparation on sand liquefaction,” Journal of
Geotechnical Engineering Division, ASCE, Vol. 103, No. 2, pp. 91-108
(1977).
15.Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil
liquefaction potential,” Journal of the Soil Mechanics and Foundations
Division, ASCE, Vol. 107, No. SM9, pp. 1249–1274 (1971).
16.Seed, H.B., and Idriss, I.M., “Soil moduli and damping factors for dynamic
response analysis,” EERC 70-10, Earthquake Engineering Research Center,
University of California, Berkeley (1970).
17.Seed, H.B., and Idriss, I.M., “Ground motions and soil liquefaction during
earthquakes,” Earthquake Engineering Research Institute Monograph, Oakland,
California (1982).
18.Seed, H.B., Idriss, I.M., Makdisi, F., and Banerjee, N., “Representation
of irregular stress time histories by equivalent uniform stress series in
liquefaction analyses,” EERC 75-29, Earthquake Engineering Research
Center,University of California, Berkeley (1975).
19.Schnabel, P.B., Lysmer, J., and Seed, H.B., “A computer program for
earthquake response analysis of horizontally layered sites,” EERC 72-12,
Earthquake Engineering Research Center, University of California, Berkeley
(1972).
20.Toki, S., Tatsuoka, F., Miura, S., Yoshimi, Y., Yasuda, S., and Makihara,
Y.,“Cyclic undrained triaxial strength of sand by a cooperative test
program,” Soils and Foundations, Vol. 26, No. 3, pp. 117-128 (1986).
21.Tatsuoka, F., Muramatsu, M., and Sasaki, T., “Cyclic undrained stress-
strain behavior of dense sands by torsional simple shear test,” Soils and
Foundations, Vol. 22, No. 2, pp. 55-70 (1982).
22.Tatsuoka, F. and Silver, M.L., “Undrained stress-strain behavior of sand
under irregular loading,” Soils and Foundations, Vol. 21, No. 1, pp. 51-66
(1981).
23.Tokimatsu, K., Yoshimi, Y., and Ariizumi, K., “Evaluation of liquefaction
resistance of sand improved by deep vibratory compaction” Soils and
Foundations, Vol. 30, No. 3, pp. 153-158 (1990).
24.Youd, T.L., and Noble, S.K., “Magnitude scaling factors,” Proc., NCEER
Workshop on Evaluation of Liquefaction Resistance of Soils, National Center
for Earthquake Engineering Research, State Univ. of New York at Buffalo, pp.
149-165 (1997a).
25.Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., “Evaluation of liquefaction
resistance of clean sands based on high-quality undisturbed samples,” Soils
and Foundations, Vol. 29, No. 1, pp. 93-104 (1989).
26.Yoshimi, Y., Tokimatsu, K., and Ohara, J., ”In situ liquefaction resistance
of clean sands over a wide density range” Geotechnique, Vol. 44, No. 3, pp.
479-494.(1994)
27.林資凱,「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程研究所,中
壢(2001)。
28.曾豐升,「現地土壤之液化強度與震陷特性」,碩士論文,國立中央大學土木工程研究
所,中壢(2002)。
29.廖啟雯,「地下地質分散式資料庫建置與應用-以台北盆地為例」,碩士論文,國立中央
大學應用地質研究所,中壢(1998)。
指導教授 黃俊鴻(Jing-Hung Hwang) 審核日期 2003-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明