博碩士論文 90323030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.233.239.20
姓名 賴建銘(Chien-Ming Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 n-型(100)矽單晶巨孔洞之電化學研究
(Electrochemical Study in the Formation of Macro-pores on n-type Si(100))
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ 鋁在酸性溶液中孔蝕行為研究★ 微陽極引導電鍍與監測
★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究
★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構★ 微陽極導引電鍍法製作微銅柱及銅柵欄之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要探討n-型(100)矽單晶於含酒精氫氟酸溶液中之光電化學行為。
研究方法首先採用直流電陽極動態極化法,探討照光強度,氫氟酸濃度等參數對n-型(100)矽單晶的陽極極化曲線的影響,以決定實驗參數。研究結果顯示:在n-型(100)矽單晶背面照光,及提高蝕刻液中氫氟酸濃度,會促進電化學蝕刻速率之增加。
實驗結果顯示,當氫氟酸濃度與照光強度固定下,在蝕刻溶液中添加酒精會影響矽單晶之陽極腐蝕行為。經由陽極動態極化曲線選取特定電位,針對 n-型(100)單晶矽於照光環境(50W,20000Lx),在含不同濃度酒精之2M氫氟酸中,同時進行定電位蝕刻與交流阻抗分析,並以掃瞄式電子顯微鏡觀察其蝕孔之表面型態,結果顯示添加酒精將有助於蝕孔更具平滑性。
此外,利用開路電位量測與交流阻抗分析,探討照光強度,氫氟酸與酒精濃度等參數對n-型(100)單晶矽的介面反應,結果顯示照光與添加酒精將有利介面電荷轉移,然而提高氫氟酸濃度其反應不易進行。
摘要(英) The photo-electrochemical behavior of n-type Si (100) in an ethanolic hydrofluoric acid (HF) has been investigated in this work. Dc-potentiodynamic polarization of the silicon, illuminated by a halogen lamp from its backside, was conducted in the HF solution containing ethanol or not. The voltammogram demonstrated that the anodic dissolution rate of the silicon in the HF solution was accelerated by the illumination. The etching rate was faster when the illumination power is intensified, and the HF concentration increased.
The effect of ethanol addition in the HF solution was also of interest. The electrochemical behavior of the silicon depicted that the presence of ethanol in the HF solution resulted in electro-polish inside the etching pits. Potentiostatic etching of the silicon, illuminated with a halogen lamp (50 W and 20,000 Lx), was conducted in 2 M HF solution containing a variety of ethanol at certain potentials selected from the anodic polarization diagram. Electrochemical impedance spectroscopy was also carried out in the same condition. The surface morphology on the etched silicon under various conditions was examined by scanning electron microscopy (SEM), and the surface roughness was evaluated by atomic force microscopy (AFM).
The open circuit potential (OCP) for the silicon, illuminated with lamp and immersed in various solutions, was measured. Further checking the results from EIS at OCP, one concluded that illumination and ethanol-addition are advantageous to preparation of macro-porous silicon.
關鍵字(中) ★ 直流陽極動態極化分析
★ 巨孔洞
★ 光電化學蝕刻
★ 電化學交流阻抗分析
關鍵字(英) ★ Electrochemical impedance spectroscopy
★ Macro-pores
★ Photo-electrochemical etching
★ Dc-potentiodynamic polarization
論文目次 Chinese Abstract (中文摘要) I
Abstract II
Acknowledgement III
Contents IV
List of Tables VIII
List of Figures X
Chapter 1 Introduction 1
1-1. Porous Silicon and Its Uses 1
1-2.Techniques Developed in Preparation of Porous Silicon 2
1-2-1. Stain etching 2
1-2-2. Dry etching 3
1-2-3. Electrochemical etching 3
1-3. Why n-type Si (100)? 4
1-4. Goals of the Study 5
Chapter 2 Literature Survey and Fundamental Theory 7
2-1. Photoelectrochemistry of the Semiconductors 7
2-1-1. Semiconductor electrodes 7
2-1-2. Photoeffects on the semiconductor electrodes 10
2-2. Dc-polarization Diagrams 11
2-3. Dissolution Chemistry of Silicon 14
2-4. Models Proposed for Porous Silicon Formation 17
2-5. Electrochemical Impedance Spectroscopy (EIS) 21
2-5-1. Principles of EIS measurements 21
2-5-2. Analysis of the EIS data 24
2-5-2-1. Equivalent circuit models 25
2-5-2-2. Non-uniqueness of circuit models 30
Chapter 3 Experimental details 32
3-1. Preparation of Sample 32
3-2. Experimental Set-up 32
3-3. Electrochemical Methods 33
3-3-1. Pretreatment and electrolyte preparation 34
3-3-2. Linear sweep voltammetry 34
3-3-3. Electrochemical impedance spectroscopy 34
3-3-4. Potentiostatic etching 35
3-3-5. Combination of EIS with potentiostatic etching 35
3-4. Experimental Instruments 36
3-4-1. Electrochemical measurements 36
3-4-2. Surface morphology examine through SEM 37
3-4-3. Measurement of surface roughness 37
Chapter 4 Results 38
4-1. Effect of Illumination on the Si/HF System 38
4-1-1. On the OCP of the system 38
4-1-2. On the EIS measured at OCP 38
4-1-3. On the voltammogram of the system 40
4-2. Concentration Effect of HF on the Si/HF System 41
4-2-1. On the OCP of the system 41
4-2-2. On the EIS measured at OCP 42
4-2-3. On the voltammogram of the system 44
4.3 Concentration Effect of EtOH on the Si/HF-EtOH System 45
4-3-1. On the OCP of the system 45
4-3-2. On the EIS measured at OCP 45
4-3-3. On the voltammogram of the system 47
4-4. Potentiostatic Etching at Ep/2, Elimit and Its EIS 48
4-4-1. Potentiostatic etching at Ep/2 and Elimit in 2M HF 48
4-4-2. Potentiostatic etching at Ep/2 and Elimit in 2M HF /5M EtOH 49
4-4-3. Potentiostatic etching at Ep/2 and Elimit in 2MHF /10M EtOH 51
4-4-4. Potentiostatic etching at Ep/2 and Elimit in 2MHF /15.8M EtOH 52
4-5. Effect of EtOH on the Surface Roughness 54
4-5-1. Surface roughness of the n-Si (100) after potentiostatic etching in 2M HF 54
4-5-2. Surface roughness of the n-Si (100) after potentiostatic etching in 2M HF / 5M EtOH 55
4-5-3. Surface roughness of the n-Si (100) after potentiostatic etching in 2M HF / 10M EtOH 55
4-5-4. Surface roughness of the n-Si (100) after potentiostatic etching in 2M HF / 15.8M EtOH 56
4-6. Effect of EtOH on the SEM Morphology 57
4-6-1. SEM morphology of the n-Si (100) after potentiostatic etching in 2M HF 57
4-6-2. SEM morphology of the n-Si (100) after potentiostatic etching in 2M HF / 5M EtOH 58
4-6-3. SEM morphology of the n-Si (100) after potentiostatic etching in 2M HF / 10M EtOH 59
4-6-4. SEM morphology of the n-Si (100) after potentiostatic etching in 2M HF / 15.8M EtOH 60
Chapter 5 Discussion 62
5-1. Solution Resistance (RΩ) Measured by EIS 62
5-2. Avoidance of Negative Resistance Resulted from the EIS measured at High Frequency 63
5-2-1. Occurrence of the negative resistance 63
5-2-2. Avoidance of occurrence of the negative resistance 64
5-3. Photo-electrochemical Behavior of n-Si (100) at OCP 66
5-4. Photo-electrochemical Behavior of n-Si (100) at Anodic Potential 68
Chapter 6 Conclusions 73
Chapter 7 Future Work 75
References 76
參考文獻 [Angelucci 1] A. R. Angelucci, A. Poggi, L. Dori, A. Tagliani, G. C. Cardinari, F. Corticelli, and M. Marisaldi, “Permeated Porous Silicon Suspended Membrane as Sub-ppm Benzene Sensor for Air Quality Monitoring“, J. Porous Mater., 7, 197, (2000).
[Anglucci 2] R. Angelucci, A. Poggi, L. Dori, G. C. Cadinali, A. Parisini, A. Tagliani, M. Mariasaldi, and F. Cavani, “Permeated porous silicon for hydrocarbon sensor fabrication“, Sens. Actuators A, 74, 1, (1999).
[Ashruf] C. M. A. Ashruf, P. J. French, P. M. Sarro, R. Kazinczi, X. H. Xia, and J. J. Kelly, “Galvanic etching for sensor fabrication“, J. Micromech. Microeng., 10, 505, (2000).
[Bard] A. J. Bard, “Electrochemical Methods: Fundamentals and Application”, JOHN WILEY & SONS, INC. p745-761, (2000).
[Beale 1] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, J. D. Benjamin, ”Microstructure and formation mechanism of porous silicon”, Appl. Phys. Lett., 46, 86, (1985).
[Beale 2] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, ”An experimental and theoretical study of the formation and microstructure of porous silicon”, J. Cryst. Growth., 73, 622, (1985).
[Behern] J. von Behren, L. Trubeskov, and P. M. Fauchet, “Preparation and characterization of ultrathin porous silicon films“, Appl. Phys. Lett., 66, 1662, (1995).
[Bell] T. E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl, “Porous silicon as a sacrificial material“, J. Micromech. Microeng., 6, 361, (1996).
[Chao] K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T. G. Tsai, “Formation of High Aspect Ratio Macropore Array on p-Type Silicon“, Electrochem. Solid-State Lett., 3, 489, (2000).
[Chelnokov] A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J. -M. Lourtioz, “Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon“, Appl. Phys. Lett., 77, 2943, (2000).
[Fauthauer] R.W. Fauthauer, T. George, A. Ksendzov, and R.P. Vasquez, “Visible luminescence from silicon waters subjected to stain etches“, Appl. Phys. Lett., 60, 995 (1992).
[Gabrielli] C. Gabrielli, ”Identification of Electrochemical Processes by Frequency Responsw Analysis: Technical Report Number 004/83”, Centre National de la Recherche Scientifique GR4 Physique des Liquides et Electrochimie Universite P et M Curie, p1-21, (1984).
[Grouing] U. Gruning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm“, Appl. Phys. Lett., 68, 747, (1996).
[Halimaoui] A. Halimaoui, “Porous Silicon Science and Technology“, edited by J. C. Vial and J. Derrien (Springer-Verlag, Berlin), p33, (1995).
[Kern] W. Kern and D. Puotinen, “Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology”, RCA Rev., 31, 187, 1970.
[Koukou] M. K. Koukou, N. Papayannakos, N. C. Markatos, M. Bracht, N. M. Van Veen, and A. Roskam, “Performance of ceramic membranes at elevated pressure and temperature effect of non-ideal flow conditions in a pilot scale membrane separator“, J. Membr. Sci., 155, 241, (1999).
[Lang] W. Lang, ” Silicon microstructuring technology”, Mater. Sci. Eng., R17, 1, (1996).
[Laurell] T. Laurell, L. Wallman, and J. Nilsson, “Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling“, J. Micromech. Microeng., 9, 369, (1999).
[Lehmann 1] V. Lehmann, H. Foll, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon“, J. Electrochem. Soc., 137, 653, (1990).
[Lehmann 2] V. Lehmann, W. Honlein, R. Reisinger, A. Spitzer, H. Wendt, and J. Willer, “A novel capacitor technology based on porous silicon“, Thin Solid Films, 276, 138, (1996).
[Lehmann 3] V. Lehmann, “Porous silicon : a new material for MEMS“, IEEE, 1, (1996).
[Lehmann 5] V. Lehmann and U. Gosele, ”Porous silicon formation: A quantum wire effect”, Appl. Phys. Lett., 58, 856, 1991.
[Macdonald] J. R. Macdonald, ”Impedance Spectroscopy: Emphasizing Solid Materials and Systems”, JOHN WILEY & SONS, INC. p1-188, (1987).
[Miller] F. Miller, A. Birner, U. Gosele, V. Lehmann, S. Ottow, and H. Foll, “Structuring of Macroporous Silicon for Applications as Photonic Crystals“, J. Porous Mater., 7, 201, (2000).
[Mizishima] I. Mizishima, T. Sato, S. Taniguchi, and Y. Tsunashima, “Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure“, Appl. Phys. Lett., 77, 3290, (2000).
[Ohji 1] H. Ohji, P. T. J. Gennissen, P. J. French, and K. Tsutsumi, “Fabrication of a beam-mass structure using single-step electrochemical etching for micro structures (SEEMS) “, J. Micromech. Microeng., 10, 440, (2000).
[Ohji 2] H. Ohji, PJ. Trimp, P.J. French, “Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid“, Sens. Actuators A, 73, 95, (1999).
[Parkhutik] V. P. Parkhutik, J. M. Albella, J. M. Martinez-Duart, J. M. Gomez-rodriguez, A. M. Baro, and V. I. Shershulsky, ”Different types of pore structure in porous silicon”, Appl. Phys. Lett., 62, 366, (1993).
[Read] A. J. Read, R. J. Need, K. J. Naish, L. T. Canham, P. D. J. Calcott, and A. Qteish, ”First-principles calculations of the electronic properties of silicon quantum wires”, Phys. Rev. Lett., 69, 1232, (1992).
[Rossi] A. M. Rossi, G. Amato, L. Boarino, and C. Novero, “Realisation of membranes for atomic beam collimator by macropore micromachining technique (MMT) “, Mater. Sci. Eng., B69-70, 66, (2000).
[Rowson 1] S. Rowson, A. Chelnokov, and J. M. Lourtioz, “Macroporous silicon photonic crystals at 1.55 μm“, Electron. Lett., 35, 753, (1999).
[Rowson 2] S. Rowson, A. Chelnokov, and J. M. Lourtioz, “
Two-Dimensional Photonic Crystals in Macroporous Silicon: From Mid-Infrared (10 m) to Telecommunication Wavelengths (1.3-1.5 m) “, J. Lightwave Technol., 17, 1989, (1999).
[Sanders] G. D. Sanders and Y. -C. Chang, ”Theory of optical properties of quantum wires in porous silicon”, Phys. Rev. B, 45, 9202, (1992).
[Shih] S. Shih, K.H. Jung, T.Y. Hsieh, J. Sarathy, J.C. Campbell, and D.L. Kwong, “Photoluminescence and formation mechanism of chemically etched silicon“, Appl.Phys. Lett., 60, 1863 (1992).
[Smith 1] R. L. Smith and S. D. Collins, “Porous silicon formation mechanism”, J. Appl. Phys., 71, R1, (1992).
[Smith 2] R. L. Smith, S. F. Chuang and S. D. Collins, ”A theoretical model of the formation morphologies of porous silicon”, J. Electro. Mater., 17, 533, (1988).
[Steiner] P. Steiner, A. Richter, W. Lang, “Using porous silicon as a sacrificial layer“, J. Micromech. Microeng., 3, 32, (1993).
[Tait] W. S. Tait, ”An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists”, PairOlocs Publication, Racine, Wisconsion., p79-115, (1994).
[Turner] D. R Turner, “Electropolishing silicon in hydrofluoric acid solutions“, J. Electrochem. Soc., 105, 653, (1958).
[Uhlir] A. Uhlir, Bell Syst. Techn. J., 35, 333, (1956).
[Vazsonyi] E. Vazsonyi, E. Szilagyi, P. Petrik, Z.E. Horvath, T. Lohner, M. Fried, G. Jalsovszky, “Porous silicon formation by stain etching“, Thin Solid Films, 388, 295, (2001).
[Walker] J. A. Walker, “The future of MEMS in telecommunications networks“, J. Micromech. Microeng., 10, R1, (2000).
[Web] http://www.webelements.com
[Wu] 吳浩青, 李永舫編著, “電化學動力學”, 科技圖書股份有限公司, pp174-185, (2001).
[Yan] H. Yan and X. Hu, ”Interfacial dynamics and formation of porous structures”, J. Appl. Phys., 73, 4324, (1993).
[Zhang 1] X. G. Zhang, S. D. Collins, and R. L. Smith, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution”, J. Electrochem. Soc., 136, 1561, (1989).
[Zhang 2] X. G. Zhang, “Mechanism of pore formation on n-type silicon”, J. Electrochem. Soc., 138, 3750, (1991).
指導教授 林景崎(Jing-Chie Lin) 審核日期 2003-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明