博碩士論文 90323088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.204.191.31
姓名 陳達建(Ta-Chien Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微管流之層流與紊流模擬
(Laminar and turbulent flow simulation for the microchannels)
相關論文
★ 以數值模擬探討微管流之物理效應★ 銅質均熱片研製
★ 熱差式氣體流量計之感測模式及氣流道效應分析★ 低溫倉儲噴流系統之實驗量測與數值模擬研究
★ 壓縮微管流的熱流分析★ 微小圓管的層流及熱傳數值模擬
★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應★ 微管道電滲流物理特性之數值模擬
★ 電滲泵內多孔介質微流場特性之數值模擬★ 被動式微混合器之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中 文 摘 要

本文以數值模擬微管流層流與紊流的熱流場特性,流道包括梯形微管道、平行板與圓管,水力直徑範圍在Dh=50μm–1.81mm;使用軟體FEMLAB的數值解並與實驗數據與傳統理論作比對。其中模擬微小圓管(Dh=50–101μm)層流場以黏性粗糙度模式 (RVM) 來分析粗糙度效應。結果顯示在Re <400條件下,梯形微管道摩擦因子(f) 數值解與實驗數據與理論解相符。層流微小圓管中,採用RVM模式的數值解會使流動阻抗降提高因而降低體積流率;f數值解與實驗數據相近但低於傳統理論解。在Re >1500,因流場可能進入過渡區而使本文RVM數值解與Mala (1999) 的RVM數值解偏離實驗結果。小圓管紊流計算使用k-ε模式與壁面定律,但在4000< Re <10000範圍的f數值解皆高於實驗量測與傳統理論解約30%,由於標準k-ε模式只適用於高雷諾數及受限於軟體無法調整紊流模式的經驗係數,導致本文紊流模擬誤差過高。

比較Gao等人(2001)與楊建裕等人(2001)的熱傳實驗結果,發現平板流道高等於0.4mm和0.7mm的局部Nu計算值與實驗數據相近。而對在高雷諾數(Re=1687) 圓管流,靠近出口的局部Nu值的實驗值與數值預測結果皆高於傳統理論解,根據實驗的解釋是因為管長不足以達到完全發展溫度場,造成實驗量測與數值預測高於層流理論解。
摘要(英) 本文以數值模擬微管流層流與紊流的熱流場特性,流道包括梯形微管道、平行板與圓管,水力直徑範圍在Dh=50μm–1.81mm;使用軟體FEMLAB的數值解並與實驗數據與傳統理論作比對。其中模擬微小圓管(Dh=50–101μm)層流場以黏性粗糙度模式 (RVM) 來分析粗糙度效應。結果顯示在Re <400條件下,梯形微管道摩擦因子(f) 數值解與實驗數據與理論解相符。層流微小圓管中,採用RVM模式的數值解會使流動阻抗降提高因而降低體積流率;f數值解與實驗數據相近但低於傳統理論解。在Re >1500,因流場可能進入過渡區而使本文RVM數值解與Mala (1999) 的RVM數值解偏離實驗結果。小圓管紊流計算使用k-ε模式與壁面定律,但在4000< Re <10000範圍的f數值解皆高於實驗量測與傳統理論解約30%,由於標準k-ε模式只適用於高雷諾數及受限於軟體無法調整紊流模式的經驗係數,導致本文紊流模擬誤差過高。
比較Gao等人(2001)與楊建裕等人(2001)的熱傳實驗結果,發現平板流道高等於0.4mm和0.7mm的局部Nu計算值與實驗數據相近。而對在高雷諾數(Re=1687) 圓管流,靠近出口的局部Nu值的實驗值與數值預測結果皆高於傳統理論解,根據實驗的解釋是因為管長不足以達到完全發展溫度場,造成實驗量測與數值預測高於層流理論解。A numerical study was performed to analyze the laminar and turbulent flow and heat transfer characteristics for various types microchannel flow. The types of microchannel flow including the parallel plate, circular tube and the trapezoidal duct, where the hydraulic diameter ranging from 50μm to 4mm. Numerical solution using the software FEMLAB are compared with experiment and theory. In addition, the roughness viscosity model (RVM) was adopted to simulate the roughness effect in the circular tube (Dh=50–101μm). Results show that when Re<400, predictions of friction factors (f) of the laminar flow in the trapezoidal duct are agreed with the experimental data and the theory. For laminar microtube flow, solutions using RVM would induce higher flow resistance and thus reduce the volume flowrate. Prediction of friction factors matches experimental data but are lower than conventional theory. When Re>1500, present solutions using RVM disagree with Mala’s (1999) RVM solutions due to the early transition to turbulent flow at Re=1500. Calculation for turbulent microtube flow are performed using the k-ε model and law of the wall, and higher f’s (about 30%) values than experiment and theory is found in the flow regime of 4000 For the case of heat transfer in the parallel plate, calculations of the local Nu compare well with available experimental measurement for the channel height equal to 0.4mm and 0.7mm. In the microtube flow at high Re (Re=1687), both experimental and numerical results of Nu close to the exit of tube are higher than the classical theory. Based on experiment’s explanation, the tube is not long enough for flow reaching the thermal fully developed condition, and thus cause experimental and numerical data higher than the theatrical value.
關鍵字(中) ★ 紊流k-ε模式
★ 黏性粗糙度模式
★ 紊流
★ 數值模擬
★ 微管流
關鍵字(英) ★ Turbulent flow
★ k-ε turbulence model
★ Roughness viscosity model
★ Numerical simulation
★ Microchannel flow
論文目次 目 錄
頁次
中 文 摘 要 i
英文摘要 ii
目 錄 iv
表 目 錄 vii
圖 目 錄 viii
符 號 說 明 xi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 微管道與傳統管道的熱流現像偏差原因 7
1.4 研究方向 13
第二章 數值模擬方法 14
2.1 有限元素法簡介 14
2.2 數值模擬軟體(FEMLAB)介紹 15
2.3. 統御方程式與流場邊界條件 16
2.3.1 梯形管流場數值模擬 16
2.3.2 紊流流場數值模擬 16
2.3.3 層流微小管RVM數值模擬 19
2.3.4 層流熱傳數值模擬 20
2.3.5 邊界條件與壁面定律(Law of the wall) 21
第三章 數值模擬結果與討論 24
3.1 層流數值模擬結果 24
3.1.1 梯形管格點數分析 24
3.1.2 速度分佈 26
3.1.3 壓力梯度 27
3.1.4 摩擦因子值比較 28
3.2 層流微小圓管RVM數值模擬結果 29
3.2.1 粗糙度黏性比較 29
3.2.2 速度剖面比較 29
3.2.3 體積流率比較 30
3.2.4 摩擦因子比較 31
3.3 紊流數值模擬結果 32
3.3.1速度分佈 32
3.3.2壓力分佈 33
3.3.3摩擦因子比較 33
3.4 熱傳數值模擬結果比較 34
3.4.1 溫度分佈 35
3.4.2 局部Nu比較 35
第四章 結論與建議 37
參考文獻 40
參考文獻 參考文獻
曹聿男,微小圓管的層流及熱傳數值模擬,國立中央大學碩士論文,桃園,2002。
Acosta R., Muller R. and Tovias C. (1985) “Transport process in narrow (capillary) channels.” AIChE J., vol. 31, pp. 473–482.
Adams T. M., Ghiaasiaan Abdel-Khalik S.I, Jeter S.M. and Qureshi, Z.H. (1998) “An Experimental investigation of single-phase forced convection in microchannel.” Int. J. Heat Mass Transfer, vol. 41, pp. 851-857.
Adams T. M., Ghiaasiaan and Abdel-Khalik S.I (1999a) “Enhancement of liquid forced convection heat transfer in microchannels due to the release of dissolved noncondensables,” Int. J. Heat Mass Transfer, vol. 42, pp. 3563-3573.
Adams T. M., Dowling S. I. and Abdel-Khalik S. I. (1999b) “Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels,” Int. J. Heat Mass Transfer, vol. 42, pp. 4411-4415.
Arkilic E. B., Schmidt M. A., and Breuer K. S. (1994) “Gaseous flow in microchannels,” ASME Symposium on Micromachining and Fluid Mechanics, Nov.
Barber R. W. and Emerson D. R. (2001) “A numerical investigation of low Reynolds number gaseous slip flow at the entrance of circular and parallel plate micro-channels,” ECCOMAS Computational Fluid Dynamics Conf.
Beskok A. and Karniadakis G. E. (1992) “Simulation of slip-flows in complex microgeometries.” ASME Proc. DSC, vol. 40, pp. 355-370.
Beskok A., Karniadakis G. E., and Trimmer W. (1996) “Rarefaction and compressibility effects in gas microflows,” J. Fluids Eng., vol. 118, pp. 448-456.
Brutin D. and Tadrist L. (2003) “Experimental friction factor of a fluid flow in microtubes,” Physics Fluids, vol. 15, no. 3, pp. 653-661.
Celata G. P., Cumo M., Gulielmi M., and Zummo G. (2000) “Experimental investigation of hydraulic and single phase heat transfer in 0.130 mm capillary tube,” Proc. Int. Conf. Heat Transfer Transport Phenomena in Microscale., pp. 108-113.
Chen C. S., Lee, S. M., and Sheu, J. D. (1998) “Numerical analysis of gas flow in microchannels,” Numerical Heat Transfer, Part A, 33: pp. 749-762.
Choi S. B., Baron R. R. and Warrington R. O. (1991) “Fluid flow and heat transfer in microtubes,” ASME DSC 40, pp. 89-93.
Choquette S. F., Faghri M., Kenyon E. J. and Sunden B. (1996) “Compressible fluid flow in micron sized channels,” ASME National Heat Transfer Conference, HTD-Vol. 327, pp. 25-32.
FEMLAB Chemical Engineering Moudule 2.3a (2002), COMSOL AB, Sweden.
Gambill W. and Bundy R. (1961) “HFIR heat transfer studies of turbulent water flow in thin rectangular channels.” ORNL-3079 UC-80-Reactor Technology, Oak Ridge National Laboratory, Oak Ridge, TN.
Ghiaasiaan S. M. and Laker T. S. (2001) “Turbulent forced convection in microtubes,” Int. J. Heat Mass Transfer, vol. 44, pp. 2777-2782.
Guo, Z. Y., “Size effect on flow and heat transfer characteristic MEMS,” Proc. of Inter. Conf. on Heat Transfer and Transport Phenomena in Microscale, Baniff. Canada, Oct. 15-20, pp. 24-31, 2000.
Hetsroni G., Mosyak A., Rozenblit R. and Yarin L. P. (1999) “Thermal patterns on the smooth and rough walls in turbulent flows,” Int. J. Heat Mass Transfer, vol. 42, pp. 3815-3829.
Judy J., Maynes D. and Webb B. W. (2002) “Characterization of frictional pressure drop for liquid flows through microchannels,” Int. J. Heat Mass Transfer, vol. 45, pp. 3477-3489.
Kaverhpour H. P., Faghri, M., and Asako Y. (1997) “Effects of compressibility and rarefaction on gaseous flows in microchannels,” Numerical Heat Transfer, Part A, 32, pp. 677-696.
Li Z. X., Du D. X. and Guo Z. Y. (2000) “Investigation on the characteristics of frictional resistance of gas flow in microtubes,” Proc. Symposium Energy Engineering, vol. 2, pp. 658-664.
Mala G. M. and Li D. (1997) “Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects,” Int. J. Heat and Fluid Flow, vol. 18, pp. 489-496.
Mala G. M. and Li D. (1999) “Flow characteristics of water in microtubes,” Int. J. Heat and Fluid Flow, vol. 20, pp. 142-148.
Merkle C. L., Kubota T., and Ko D.R.S, (1974) “An analytic study of effects of surface roughness on boundary layer transition,” AF Office of Scien. Res. Space and Missle Sys. Org., AD/A004786.
Moody L. F. (1944) “Friction Factors for Pipe Flow,” Transactions of the ASME, vol. 66, pp. 671-684.
Obot N. T. (2002) “Toward a better understanding of friction and heat/mass transfer in microchannels-A Literature Review,” Microscale Thermophysical Eng., vol. 6, pp. 155-173.
Pfahler J., Harley J., Bau H., and Zemel J. (1990) “Liquid transport in micron and submicron channels,” Sensors and Actuators, vol. A21-A23, pp. 431-434.
Peng X. F., Peterson G. P., and Wang B. X. (1994a) “Frictional flow characteristics of water flowing through microchannels,” Exp. Heat Transfer, vol. 7, pp. 249-264,.
Peng X. F., Peterson G. P., and Wang B. X. (1994b) “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, vol. 7, pp. 265-283.
Peng X. F, and Peterson G. P. (1996) “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Exp. Thermal and Fluid Science, vol. 12, pp. 98-104.
Peng X. F., Peterson, G. P. and Wang, B. X. (1996) “Flow boiling of binary mixtures in microchannel plates,” Int. J. Heat Mass Transfer, vol. 39, no. 6, pp. 1257-1264.
Puzhen G., Stephane L. P. and Michael F. M. (2002) “Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels.” Int. J. Thermal Sciences, vol. 41, pp. 1017-1027.
Qu W., Mala G. M. and Li D. (2000) “Pressure-driven water flows in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer, vol. 43, pp. 353-364.
Sharma R. S., Seshadri V. and Malhotra R. C. (1979) “Drag reduction in dilute fiber suspensions,” AIChE J., vol 22, pp. 750-753.
Tso C.P. and Mahulikar S. P. (1998) “The use of the Brinkman number for single phase forced convective heat transfer in microchannels,” Int. J. Heat Mass Transfer, vol. 41, no. 12, pp. 1759-1769.
Tso C. P. and Mahulikar S. P. (1999) “The role of the Brinkman number in analyzing flow transitions in microchannels,” Int. J. Heat Mass Transfer, vol. 42, pp. 1813-1833,.
Tso C. P. and Mahulikar S. P. (2000) “Experimental verification of the role of Brinkman number in microchannels using local parameters,” Int. J. Heat Mass Transfer, vol. 43, pp. 1837-1849.
Tuckerman D. B., and Pease, R. F. W. (1981) “High performance heat sinking for VLSI,” IEEE Electron Dev. Let., EDL-2, pp. 126-129.
Turner S. E., Sun H., Faghri M. and Gregory O. J. (2002)”Gas flow through smooth and rough microchannel,” 12th Int. Heat Transfer Conf., Grenoble, France, Aug. 18-23.
Vaselski R. C. and Metzner A. B. (1974) “Drag reduction in the turbulent flow of fiber suspensions,” AIChE J. vol. 20, pp. 301-306.
Wolfshtein M. (1972) “The velocity and temperature distribution in one-D flow with turbulence augmentation and pressure gradient,” Int. J. Heat Mass Transfer, vol. 15, pp. 1787.
Wu P. and Little W. A. (1983) “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators,” Cryogenics, vol. 23, no. 5, pp. 273-277.
Xu D., Ng T. Y., Lam K. Y. and Li H. (2001) “Numerical simulations of fully developed turbulent liquid flows in micro tubes,” J. Micromech. Microeng., vol. 11, pp. 175-180.
Yang C., Li D. and Hasliyah J. H. (1998) “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects,” Int. J. Heat Mass Transfer, vol. 41, pp. 4229-4249.
Yang C. Y., Chien H. T., Lu S. R. and Shyu R. J., “Friction characteristics of water, R-134a and air in small tubes,” Proc. of Inter. Conf. on Heat Transfer and Transport Phenomena in Microscale, pp. 168-174, 2000.
Yang C. Y., Hsu S. M., Chien H. T. and Chen C. S., “Experimental investigation of liquid R-134a and water forced convection heat transfer in small circular tubes,” Trans. of the Aeronautical and Astronautical Society of R.O.C., Vol. 33, No. 4, pp. 179-184, 2001.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明