博碩士論文 90323092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.228.24.192
姓名 黃偉峰(Wei-Feng Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 CNC三維圓弧插補器
(Three Dimensional Circular Interpolator in CNC)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以FPGA為基礎之精密位置控制IC
★ PID與模糊控制在營建工程自動化的探討★ 高速射出成型機自我調整控制器之設計與實現
★ 全電式射出成型機之保壓改善★ 自動遮蔽金屬電弧焊接系統之滑動模態控制
★ 智慧型CNC工具機進給軌跡精度改善系統★ 使用FPGA設計之模糊控制IC實現在剛性攻牙
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 工具機發展已數十年。在自動化當道的今日,CNC工具機普遍運用G-Code作為刀具路徑產生的表示方法,藉由G-Code描述,工具機得以在每次中斷插補得到刀具所要前進的三軸距離。一般常用的G-Code多為直線及圓弧插補,優點是用的廣且技術單純,缺點為資料筆數過多,造成記憶體消耗,且G-Code兩兩加減速不連續導致加工時間增長。目前已知有工具機廠商將NURBS曲線運用於插補器上,可以做到1.減化資料點數,2.縮減加工時間,以解決上述問題。
本論文主要著力在於使用另一種改良型的插補器(interpolator),運用空間圓弧的堆砌(arc spline)去擬合(approximation)曲線,以利用圓弧G2連續的特性。之後並模擬一工具機上新增一三維圓弧插補的NC指令(以下簡稱3DArc),以便下達切削及移動工具機的動作,使所擬合出的曲線更易實現於工具機上。以期達到如NURBS插補器的加速效果及切削任何方向空間圓弧。
摘要(英) The control of CNC machine tools developed by G-Code and M-Code produce cutting route. According to the description of G-Code, three axes of a CNC machine tools can be moved within a desired small distance in each interpolation interrupt. In this thesis, the G-Code commands, like G01 (linear interpolation) and G02 (circular interpolation), are changed to 3D circular interpolation to reduce huge data amount and memory waste. Furthermore, the discontinuity between two G-Codes will be reduced and manufacturing time will be shortened. The purpose of the developed 3D circular interpolation compete NURBS interpolation in performance in manufacture industry.
Besides, the 3D circular arcs approximation has been developed to combine 3D circular interpolation to fit curves and can promise G1 and near G2 continuity between two 3D circular arcs.
All that we do is to approximate a curve by 3D circular arcs and simulate the CNC machine core, thus we can cut any curve or circular arc in any plane.
關鍵字(中) ★ 圓弧擬合
★ 三維圓弧插補器
★ 工具機
關鍵字(英) ★ CNC machine tools
★ circular approximation
★ 3D circular interpolator
論文目次 CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATIONS FOR RESEARCH 1
1.2 THESIS ARRANGEMENT 1
1.3 FRAMEWORK 6
1.4 THESIS ARRANGEMENT 7
CHAPTER 2 PIECEWISE-CIRCULAR CURVES APPROXIMATION 8
2.1 INTRODUCTION 8
2.2 PIECEWISE-CIRCULAR CURVES APPROXIMATION 9
2.2.1 Construction and Representation of single PCCs 10
2.3 REMARK 15
CHAPTER 3 APPROXIMATION ERROR ANALYSIS AND SEARCH METHODS 16
3.1 INTRODUCTION 16
3.2 APPROXIMATION OF TANGENT FROM DATA 18
3.3 ERROR DETECTING METHOD 19
3.3.1 Plane Least Square Error 19
3.3.2 Error Method In Piecewise-Circular Curves 22
3.4 BINARY SEARCH 23
3.5 SIMULATION 24
3.6.1 Small Curvature 28
3.6.2 Long Line 28
3.6.3 Angle 28
3.6.4 Semi-Sphere Approximation 28
3.7 REMARK 31
CHAPTER 4 THREE-DIMENSIONAL CIRCULAR ARC INTERPOLATION 32
4.1 INTRODUCTION 32
4.2 CONTROL POINTS TO CIRCULAR ARC INFORMATION 33
4.3 COORDINATE TRANSFORM 34
4.3.1 Translation 35
4.3.2 Mapping 35
4.4 THREE-DIMENSIONAL CIRCULAR ARC INTERPOLATION 36
4.5 SIMULATION 38
4.6 SIMULATION WITH COUNTING REMAINDER 42
4.7 REMARK 47
CHAPTER 5 CONCLUSION AND FUTURE WORK 48
REFERENCES 49
參考文獻 REFERENCES
[1] 王仁傑, "CNC工具機加工補間之研究", 成大造船暨船舶機械工程研究所, 2002, June.
[2] Spence, A. D., "A Table Top CNC/CMM Teaching Apparatus", McMaster University.
[3] Lin, R. S. “Real-time surface interpolator for 3-D parametric machine on 3-axis machine tools”, international journal of machine tools & manufacture, vol.40, pp.1513-1526,2000.
[4] Meek, D.S. and D.J. Walton, “Spiral arc spline approximation to a planar spiral”, Journal of Computational and Applied Mathematics, Vol.107, (1999) 21-30.
[5] Meek, D.S. and D.J. Walton, “Approximation of discrete data by G1 arc spline”, Computer aided design, Vol.24, number 6, June,1992(301-306).
[6] Goodman, T N T and K. Unsworth, “Shape interpolation by curvature continuous parametric curves”, Computer Aided Geometric Design, Vol 5(1988), pp. 323-340.
[7] Meek, D.S. and D.J. Walton, “Hermite interpolation with Tschirnhausen cubic spirals”, Computer Aided Geometric Design, Vol 14(1997), pp. 619-635.
[8] Yang, Xunnian, “Efficient circular arc interpolation based on active tolerance control”, Computer aided design,34(2002), pp.1037-104.
[9] Guggenheimer, H. W., “Differential Geometrey“, Dover, ISBN: 0-486-63433-7.
[10] Su, B. Q. and D. Y. Liu, “Computational Geometry-curve and surface modeling”, Academic Press, ISBN:0-12-675610-4
[11] Bolton, K,M., “Biarc curve”, Computer aided design, Volume 7, Number 2 , April(1975), pp 89-92.
[12] Jaroslaw R. Rossignac Aristides A. G. Requicha, “Piecewise-circular curves for geometric modeling”, IBM J. Res. Develop. Vol.31 No.3 May, 1987.
[13] Parkinson, D B and D N Moreton, “Optimal biarc curve fitting”, computer aided dssign, Vol.23 No.6, August, 1991.
[14] Tseng, Y. J. and Y. D. Chen,”Three dimensional biarc approximation of freeform surfaces for maching tool path generation”, INT. J. PROD. RES., 2000, Vol.38, NO.4, pp 739-763.
[15] 廖家賢, “NURBS插補器在PC-BASED CNC之設計與實現”, 國立中央大學機械工程研究所, 2002, July,3.
[16] Kiritsis, D., “High Precision Interpolation Algorithm for 3D Parametric curve Generation”, Computer-Aided Design, 26(1994), pp 850-856.
[17] Lancaster, P. and Salkauskas K., “Curve and Surface Fitting”, Academic Press, 1990.
[18] Boor, De, “A Practical Guide to Splines”, Springer-Verlag, New York, 1978.
[19] Dunham, J. G.,” Optimal Uniform Piecewise Linear Approximation of Planar Curves”, IEEE Transations on Pattern Analysis and Machine, VOL PAMI-8, NO 1, January 1986, pp 67-75.
[20] Marciniak, K. and B. Putz”, Approximation of spirals by piecewise curves of fewest circular arc segments”, Vol 16, number 2, march 1984, pp 87-90
[21] Meek, D.S. and D.J. Walton,” Planar osculating arc splines ”, Computer Aided Geometric Design, Vol 13, Issue: 7, October, 1996, pp. 653-671.
[22] Piegl, L., ”Curve fitting algorithm for rough cutting”, Computer-Aided Design, Vol 18, number 2, march, 1986, pp 79-82.
[23] Yeung, M. K. and D. J. Walton,”Curve fitting with arc splines or NC toolpath generation”, Computer-Aided Design,Vol 26,Nom 11,November,1994, ,pp 845-849
[24] Schönheer, J., ”Smooth biarc curves”, Computer-Aided Design, Vol 25, number 6, June 1993, pp 365-376.
[25] YANG, M.Y., T. Y. Shon and T. M. Lee,”Cam Profile machining by triarc curve fitting”, International Journal of Production Research, VOL. 36, NO. 7, 1998, pp 1767-1778.
[26] Moreton, D. N., D. B. Parkinson and W. K. Wu, ”The application of a biarc technique in CNC maching”, Computer-Aided engineering Journal, April,1991, pp 54-60.
[27] Ong, C. J., Wong, Y.S., H.T. Loh and X.G. Hong, “OPTIMIZATION APPROACH FOR BIARC CURVE-FITTING OF B-SPLINE CURVES”,Natl Univ of Singapore Source: Computer Aided Design v28 n12 Dec 1996 Butterworth-Heinemann Ltd Oxford Engl p 951-959 ISSN: 0010-4485 CODEN: CAIDA5
[28] Safonova, A., Rossignac, J., “Compressed piecewise-circular approximations of 3D curves”, Computer-Aided Design, Vol 35, Issue: 6, May, 2003, pp. 533-547.
[29] Walton,D. J. and R. Xu, ”Turning point preserving planar interpolation”, ACM Trans. Graph. Vol.10 (1991), pp 297-311.
[30] Akima, H., ”A new method of interpolation and smooth curve fitting based on local procedures”, J. ACM, Vol.17, 1970, pp.589-602.
[31] Sedgewick, R., ”Algorithms in C,Third Edition”, Addison Wesley.
[32] Spence, A. D., H. L. Chan, ”A Table Top CNC/CMM Teaching Apparatus”, 2000, ASME.
[33] Lin, R. S., ‘Real-time surface interpolator for 3-D parametric machine on 3-axis machine tools’, international journal of machine tools & manufacture, Vol.40, pp.1513-1526, 2000.
[34] Schilling, R. J., ” Fundamentals of Robotics Analysis and Control”, Englewood Cliffs, N.J: Prentice Hall, 1990, c1988.
[35] Lee, K., ”Principles of CAD/CAM/CAE Systems”, Addison-Wesley.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2003-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明