博碩士論文 90323114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.236.126.69
姓名 簡汎清(Fan-Ching Chien)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超高解析度表面電漿共振生物感測器之研製
(Design and fabrication of ultrahigh-resolution surface plasmon resonance biosensors)
相關論文
★ VKF階次追蹤之探討與應用★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究
★ 聲管系統變動諧頻噪音之主動控制★ 碳化矽的電泳沈積現象探討
★ 光強調變雷射書寫機之研製★ 應用3D重現技術輔助汽車肇事之研究
★ DVD光碟機之適應性聚焦控制★ 光波導耦合表面電漿子之電光調變器
★ 表面電漿共振移相干涉儀之影像處理系統★ 衰逝全反射生醫感測儀之研製
★ 表面電漿共振移相干涉術:即時微陣列DNA雜交分析★ 具高分子電光調變器之調頻分頻多工影像傳輸系統
★ 表面電漿共振影像系統於DNA微陣列雜交探測★ DVD光碟機之DSP主動式聚焦控制器
★ 簡灰法之研究與應用★ 具液晶移相干涉術之適應光學系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由對各種模態的表面電漿共振(surface plasmon resonance,SPR)生物感測器之靈敏度加以分析比對。目前,不論何種組態之SPR生物感測器其偵測極限大約為1 pg/mm2的生物分子表面覆蓋度,難以偵測低濃度之微小生物分子的交互作用情形。因此,本論文提出一種含有金奈米粒子強化(Au nanoparticle-enhanced)之SPR生物感測器光學量測系統,經實驗證實其偵測解析度有機會降低至100 fg/mm2。此嶄新式奈米粒子強化之超高解析度SPR生物感測器透過Maxwell-Garnett模態理論及Fresnel方程式來分析設計,並經由RF co-sputter鍍膜技術製作。將可應用到新藥研發、基因定序、醫療診斷等領域上,並且此奈米粒子強化之超高解析度SPR生物感測器事先不須經額外標記(label-free),即可直接分析微量生物分子間交互作用分析(biomolecular interaction analysis,BIA),將成為生物醫學領域上最重要的篩檢感測器。
在生物分子交互作用分析的應用上,分別對於去氧核糖核酸分子雜交(DNA hybridization)反應動力學之研究,並利用外加電場效應降低雜交反應時間,加速生物晶片檢測的速率。以及探討蛋白質分子的吸附動力學。並將SPR技術應用到新興的分子拓印高分子(molecular imprinted polymer,MIP)晶片篩檢上。經由上述的動力學研究,將可建立一完整生物分子行為之作用機制技術平台,將提昇藥物設計與蛋白質體學(proteomics)研究之能力。
摘要(英) Theoretically, simulate and compare the sensitivity of any mode of the existing thin film surface plasmon resonance (SPR) biosensors. No matter which mode of the existing thin film SPR biosensors such as convential SPR biosesor, couple plasmon-waveguide resonance (CPWR) biosesor, and long-range surface plasmon resonance (LRSPR) biosesor, the detection resolution is limited to approximately 1 pg/mm2 of biomolecular surface coverage. Under this constrain, small biomolecular interactions in low concentration are hard to be analyzed.
Hence, by increasing the enhancement factor of SPR through metal nanoparticles and eliminating sensing noise with the optical differential metrology system, we demonstrate the resolution of Nanoparticle-enhanced SPR biosensors for detecting the surface coverage of biomaterial down to 100 fg/mm2. The novel nanoparticle-enhanced ultrahigh-resolution SPR biosensors are designed based on the Maxwell-Garnett model and Fresnel equations, and are fabricated by using the RF co-sputter deposition. Therefore, the nanoparticle-enhanced ultrahigh-resolution SPR biosensors can directly analyze tiny biomolecular interactions without adding labels and they will likely become the most important sensing device in the field of biomolecular diagnosis.
About biomolecular interaction analysis (BIA), focus on the kinetics of DNA hybridization, then also utilize electric field to reduce time of hybridization and will be able to speed up the rate of detection of biochip greatly, the fundamental study of adsorption kinetics of protein molecules. Furthermore, apply this technology to detection of novel molecular imprinted polymer (MIP) chip. Provide systematical information of interaction mechanism and kinetics of processes of biomolecules and advance the ability of drug design, proteomics study.
關鍵字(中) ★ 耦合電漿波導共振
★ 表面電漿共振
★ 生物分子交互作用分析
★ 分子拓印高分子
★ 波導耦合表面電漿共振
★ 長距離表面電漿共振
★ 奈米粒子強化
★ 生物感測器
★ 靈敏度
★ 超高解析度
關鍵字(英) ★ biosensor
★ sensitivity
★ ultrahigh-resolution
★ nanoparticle-enhanced
★ waveguide-coupled surface plasmon resonance
★ long-range surface plasmon resonance
★ coupled plasmon-waveguide resonance
★ surface plasmon resonance
★ biomolecular interaction analysis
★ molecular im
論文目次 第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3文獻回顧 4
1-3-1光波耦合方式 6
1-3-2表面電漿共振現象的量測方式 8
1-3-3表面電漿共振生物感測器之靈敏度提昇 10
1-4 論文架構 12
第二章 表面電漿共振與衰逝全反射生物感測儀 13
2-1表面電漿共振現象 13
2-1-1表面電漿波 13
2-1-2單一界面組態之Fresnel方程式及色散關係式及其共 振條件 14
2-1-3二層界面組態之Fresnel方程式及色散關係式 20
2-1-4三層界面組態之Fresnel方程式及色散關係式 23
2-2表面電漿共振生物感測器之研製 26
2-3衰逝全反射生物感測儀 28
2-3-1光學系統 29
2-3-2旋轉平台操控 31
2-3-3溫度控制系統 31
2-3-4系統程式設計 32
第三章 各式模態表面電漿共振生物感測器與其靈敏度之比較 34
3-1傳統表面電漿共振生物感測器 34
3-1-1靈敏度推導 34
3-1-2靈敏度模擬分析 39
3-2耦合電漿波導共振生物感測器 42
3-2-1耦合電漿波導共振生物感測器之推導 42
3-2-2靈敏度模擬分析 46
3-3長距離表面電漿共振生物感測器 50
3-3-1長距離表面電漿共振生物感測器之推導 50
3-3-2靈敏度模擬分析 54
第四章 超高解析度表面電漿共振生物感測器 60
4-1奈米粒子強化表面電漿共振之理論分析 61
4-2奈米粒子表面電漿共振生物感測器之製作 64
4-3奈米粒子表面電漿共振生物感測器之強化效應 66
4-3-1強化效應之分析 66
4-3-2超高解析度之測試 69
4-4波導耦合表面電漿共振生物感測器 76
4-4-1理論分析 76
4-4-2設計與靈敏度比較 79
第五章 生物分子間交互作用動力學之研究 82
5-1去氧核糖核酸雜交之動力學 83
5-1-1去氧核糖核酸探針固定化試驗 87
5-1-2去氧核糖核酸晶片雜交反應試驗 90
5-1-3專一性雜交反應試驗 96
5-2外加電場於DNA雜交反應動力學之研究 99
5-2-1短鏈DNA於流速50 l/min之試驗 99
5-2-2長鏈DNA於流速靜止之試驗 103
5-3蛋白質分子吸附動力學 106
5-3-1晶片表面改質硫醇化合物之試驗 108
5-3-2 HSA蛋白質吸附於羧基改質之晶片表面之試驗 110
5-3-3 HSA蛋白質吸附於胺基改質之晶片表面之試驗 112
5-4分子拓印高分子晶片檢測 114
第六章 結論 118
參考文獻 120
參考文獻 [1] J. Homola and S.S. Yee, “Surface plasmon resonance sensors: review, ”Sensors and Actuators B, 54, 3-15 (1999).
[2] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” Journal of Colloid
and Interface Science, 143, 513-526 (1991).
[3] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.
Rev., 106, 874 (1957).
[4] C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev., 118, 640 (1960).
[5] K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics, 25-78 (1987).
[6] V. Owen, “Real-time optical immunosensors – a commercial reality,” Biosensors & Bioelectronics, 12, No.1 (1997).
[7] Z. Salamon, H.A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system. II: Applications to biological systems,” Biochimica et Biophysica Acta, 1331,131-152 (1997).
[8] J. Homola and S.S. Yee, “Surface plasmon resonance senaors based on diffraction gratings and prism couplers: sensitivity comparison,”
Sensors and Actuators B, 54, 16-24 (1999).
[9] R.P.H. Kooyman, H. Kolkman, J.V. Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Analytica Chimica Acta, 213, 35-45 (1988).
[10] P.I. Nikitin, A.A. Beloglazov, V.E. Kochergin et al, “Surface plasmon resonance interfreometry for biological and chemical sensing,” Sensors and Actuators B, 54, 43-50 (1999).
[11] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, 4, 299-304 (1983).
[12] Z. Salamon, H.A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonances: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophysical Journal, 73, 2791-2797 (1997).
[13] Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophysical Journal, 80, 1557-1567 (2001).
[14] G.G. Nenninger, J. Homola, S.S. Yee, and P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and Actuators B, 74, 145-151 (2001).
[15] K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, “Preparation and characterization of Au colloid monolayers,”Anal. Chem., 67, 735-743 (1995).
[16] K.C. Grabar, K.R. Brown, C.D. Keating, S.J. Stranick, S.-L.Tang, M.J. Natan, “Nanoscale characterization of gold colloid monolayers: a comparison of four techniques,” Anal Chem., 69, 471-477 (1997).
[17] K.R. Brown, and M.J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces,” Langmuir, 14, 726-728 (1998).
[18] K.R. Brown, L.A. Lyon, A.P. Fox, B.D. Reiss, and M.J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles. 3.controlled formation of conductive Au films,” Chem. Mater., 12, 314-323 (2000).
[19] L.A. Lyon, D J. Peña, and M.J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B, 103, 5826-5831 (1999).
[20] L.A. Lyon, M.D. Musick, P.C. Smith, B.D. Reiss, D.J. Peña, and M.J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sensors and Actuators B, 54, 118-124 (1999).
[21] L.A. Lyon, M.D. Musick, and M.J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem., 70, 5177-5183 (1998).
[22] L. He, M.D. Musick, S.R. Nicewarner et al, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc., 122, 9071-9077 (2000).
[23] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag Berlin Heidelberg, (1988).
[24] A.A. Kolomenskii, P.D. Gershon, and H.A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Applied optics, 36, 6539-6547 (1997).
[25] J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sensors and Actuators B, 41, 207-211 (1997).
[26] H.E.D. Bruijn, B.S.F. Altenburg, R.P.H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Optics communications, 82, 425-432 (1991).
[27] H.E.D. Bruijn, R.P.H. Kooyman, and J. Greve, “Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations,” Applied optics, 31, 440-442 (1992).
[28] J.C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, 203, 385 (1904).
[29] T. Ung, L.M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A, 202, 119-126 (2002).
[30] P.-T. Leung, D. Pollard-Knight, G.P. Malan, and M.F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sensors and Actuator B, 22, 175-180 (1994).
[31] E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B, 105, 11159-11168 (2001).
[32] L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, “Quantitative interpretation of response of surface plasmon resonance sensors to adsorbed film,” Langmuir, 14, 5636-5648 (1998).
[33] F.F. Bier and F.W. Scheller, “Label-free observation of DNA-hybridisation and endonuclease activity on a wave guide surface using a grating coupler,” Biosensors & Bioelectronics, 11(6/7), 669-674 (1996).
[34] K.A. Peterlinz, R.M. Georgiadis, T.M. Herne, and M.J. Tarlov, “Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy,” J. Am. Chem. Soc., 119, 3401-3402 (1997).
[35] R.J. Heaton, A.W. Peterson, and R.M. Georgiadis, “Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and dehybridization in monolayer nucleic acid film and label-free discrimination of base mismatches,” P.N.A.S., 98, 3701-3704 (2001).
[36] 蔡建宏, “衰逝全反射生醫感測移之研製,” 國立中央大學機械工程研究所碩士論文, 6月(2002).
[37] Benjamin Lewin, Genes VII, Oxford university press (2000).
指導教授 陳顯禎、吳漢雄
(Shean-Jen Chen、John H. Wu)
審核日期 2003-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明