博碩士論文 90323137 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.172.195.49
姓名 吳昇哲(Sheng-Je Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 小型熱再循環觸媒燃燒器之實驗研究及應用
(An Experimental Study of A Small Heat–Recirculating Catalytic Burner and Its Applications)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應
★ 預混甲烷紊焰拉伸量測,應用高速PIV★ 氫能利用:過焓觸媒熱電產生器之實作研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究目標之一是建構一個以瑞士捲燃燒器為基礎的小型省能熱水器,藉由燃燒器幾何形狀與水管排列方式的不同,針對熱水器的出口水溫變化與其熱效率進行量測與分析。瑞士捲燃燒器是應用熱再循環原理,嚐試將熱損失減到最小以提高燃燒效率,並達到超焓燃燒之目的。本實驗採用丙烷和空氣預混燃氣作為燃料,預混燃氣沿著瑞士捲燃燒器的進氣流道進入燃燒室中心,引燃後所產生的高溫生成物沿排氣流道流出。水管管路則是沿著燃燒器內部的排氣流道上方捲繞至燃燒室中心,並採用熱傳導的方式加熱水溫。本研究另一目標則是結合熱再循環與觸媒燃燒兩大技術,利用觸媒燃燒屬於低溫表面反應的特性,建立一個能夠長時間提供穩定熱源的小型超焓燃燒器。
有關省能熱水器的研究,在不同的水流量Qw、燃氣流道雷諾數Ref = VfD/ν、水管層數(lay)等不同操作條件,針對水溫與熱效率的影響進行分析討論,Vf為燃氣流道流速,D為進氣流道寬度和ν為流體的運動粘滯係數。實驗結果顯示,在固定的預熱時間與當量比(equivalence ratio, ψ)之下,熱水器的出口水溫Tw-out與熱效率h會隨著管路水流量的增加而減低,而燃氣流道雷諾數的提高,亦會有相同的趨勢,例如在lay = 1、Qw = 2.0 L/min的操作條件下,流道流速從Ref = 503提升到Ref = 754,熱效率會從h = 80.1%降低到h = 37.2%。此外在相同的操作條件下,增加水管層數能夠增加出口水溫,對於熱效率也有所提升,在Ref = 503、Qw = 2.0L/min時,雙層水管的熱效率會比單層水管高出10%以上。
有關觸媒燃燒實驗,我們改變不同實驗條件,來探討其對觸媒溫度與污染物排放的影響。結果證實觸媒段的出口溫度Tc-out會隨著流道圈數N與觸媒反應總表面積的增加而上升,若是提高Ref、觸媒段長度Lc,則出口溫度會有下降的情形發生。在使用鈀觸媒的情形下,觸媒燃燒器的臨界貧油當量比在ψc =0.06時仍然可以很穩定地產生放熱反應,大幅地延伸了傳統的貧油可燃極限(丙烷的貧油可燃極限為ψ= 0.57)。實驗中針對不同種類與幾何形式的觸媒進行比較,發現到不論是在出口溫度、貧油可燃極限、污染物排放等量測結果,蜂巢式鈀觸媒表現皆優於白金觸媒,而顆粒狀白金觸媒因反應表面積較少,故表現結果最不理想。整個觸媒實驗過程大多屬於低溫燃燒反應(<800℃),因此幾乎量測不到NOx的濃度,而CO的排放濃度在ψ= 0.4以下皆低於20 ppm(ψ= 0.2時CO僅有1 ppm)。在ψ= 0.5、Ref = 377的條件下進行觸媒的耐久性測試,發現到隨著反應時間的增加,觸媒段出口溫度會有下降的趨勢。利用掃描式電子顯微鏡(SEM)拍攝觸媒基材表面顆粒的分佈情形,觀察到觸媒燒結的部份會隨操作時間的增加而增加,在t=120min、ψ= 0.2~0.4的條件下,觸媒基材表面的顆粒因受溫度的影響,而會有燒結現象,在白金觸媒部份甚至出現整塊燒結的情形,而在t=240min、ψ= 0.2~0.4的條件下,兩種觸媒都有整片燒結的情形發生,圖片中的龜裂現象,研判是觸媒在實驗結束後因冷卻收縮不均而產生的。
摘要(英) Concerning the study of the energy-saving geyser, we varied the water tube layer number (lay), the water volume flow rate (Qw), and the flow Reynolds number (Ref =VfD/ν) to evaluate the influence of these parameters on the water outlet temperature (Tw-out) and the corresponding thermal efficiency (η) of the geyser, where Vf is the fuel mixture’s mean velocity, D is the reactant channel’s width, andνis the reactant kinematic viscosity. It is found that Tw-out and η are decreased when Qw and/or Ref are increased. For examples, when the value of Ref increases from 503 to 754, η reduces from 80.1% to 37.2% for the conditions of lay = 1 and Qw = 2.0 liter/min. When lay increases from 1 to 2, η can increase up to 10% at Ref = 503 and Qw = 2.0 liter/min.
For the catalytic burner, we varied the operating conditions to measure temperature distributions and the emissions. The results indicate that the catalytic outlet temperature Tc-out (just outside the honeycomb catalyst) is increasing when the number of rolls of the burner N is increasing. If we increase Ref and the length of catalyst Lc, Tc-out will decrease. We also found that the Pd catalytic burner can be operated at a critical equivalence ratio c = 0.06, which is much less than the common lean flammability limit of C3H8/air mixtures where = 0.57. The honeycomb catalytic burn is much better than that using Pt pellets. For emission measurements, the NOx emission is below 1 ppm because the catalytic experiment is operated at low combustion temperature (< 800℃). The concentrations of CO are less than 20 ppm at < 0.4. If = 0.2, the concentrations of CO are no more than 1 ppm. For the test of durable ability of the catalytic burner, the results show that Tc-out is decreased by increasing the operating time at fixed = 0.5 and Ref = 377 conditions. Using the scanning electron microscope (SEM) to take the particle surface of catalytic substrate, we found that the scope of catalytic sinter is increased by increasing the operating time. The particle of catalytic substrate surface is obviously sintered by high temperature (T up to 1000℃) after 120min operations at = 0.2 ~ 0.4 conditions. On the surface of Pt catalytic, we found that the lump sinter is produced. Both Pt and Pd catalytic surface are forming great range of sinter when the operation time is up to 4 hours at = 0.2 ~ 0.4 for highest temperature up to 1000℃. Furthermore, we found that the chap phenomenon on the catalytic surface may be formed by the unbalanced cooling shrink after experiment. In the future, we shall build a small catalytic burner together with thermoelectrical materials to generate electricity.
關鍵字(中) ★ 觸媒燃燒
★ 熱再循環
關鍵字(英) ★ catalytic combustion
★ heat–recirculating
論文目次 目 錄
摘要…………………………………………………………………….I
英文摘要………………………………………………………………II
誌謝……………………………………………………………………IV
目錄…………………………………………………………………….V
圖表目錄……………………………………………………………VIII
符號說明………………………………………………………………XI
第一章 前言…………………………………………………………..1
1.1 研究動機………………………………………………………...1
1.2 問題所在…………………………………………………….3
1.3 解決方法…………………………………………………….5
1.4 論文概要…………………………………………………….7
第二章 文獻回顧……………………………………………………..9
2.1熱再循環原理……….……………………………………….9
2.2貧油預混紊流燃燒…………………..…………………….11
2.3觸媒之原理………….………….………………….….….12
2.3.1基本觀念…………………..…………………………….....12
2.3.2觸媒之組成…………………………………………….......13
2.3.3觸媒反應過程………………………………………….......21
2.4熱再循環觸媒燃燒技術之應用…………………………….....20
第三章 實驗設備與量測方法……………………….……………..25
3.1瑞士捲燃燒器實驗系統之組裝…………………………….25
3.1.1瑞士捲燃燒器之製作……………………..………….......26
3.1.2氣體流量控制與混合裝置………………..……….27
3.1.3溫度量測裝置……..……………..……………….28
3.1.4實驗之觸媒材料..………………………………….29
3.1.5 廢氣分析之量測……………..………………………......30
3.2熱再循環省能熱水器之設計………………...……………....31
3.2.1省能熱水器之建構………………….………………........31
3.2.2水管管路與流量控制裝置………………………….32
3.3觸媒燃燒器之設計……………….…………………………33
3.4預混燃氣之操作方式與相關計算…….……………………35
第四章 實驗結果與討論…………………………………………...42
4.1熱再循環省能熱水器之量測分析…………….……………42
4.1.1省能熱水器之溫度量測…………………………….42
4.1.2熱效率之估算……………………………………….43
4.2觸媒燃燒器之操作特性探討…………….……...…………...45
4.2.1觸媒段出口溫度變化…...……………………………..45
4.2.2污染物排放之量測與分析…………….………………..50
4.2.3燃料轉換率之分析………….…………………………..52
4.2.4貧油可燃極限之量測…………………………………...54
4.2.5觸媒使用情形之評估…………………………………...55
第五章 結論與未來工作…………………………………………...83
5.1熱再循環省能熱水器之分析….……………………………83
5.2觸媒燃燒器之研究…………..…………………………….84
5.3觸媒電能產生器之探討…..…………………………………...85
5.4未來工作………………………………………………………...86
參考文獻………………………………………………………………88
附錄……………………………………………………………………91
參考文獻 參考文獻
Bond, T. C., Noguchi, R. A., Chou, C. P., Mongia, R. K., Chen, J. Y., and Dibble, R. W., “Catalytic oxidation of natural gas over supported platinum: flow reactor experiments and detailed numerical modeling”, Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1771-1778 (1996).
Bradley, D., “How fast can we burn ?”, Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 247-262 (1992).
Carroni, R., Schmidt, V., and Griffin, T., “Catalytic combustion for power generation”, Catal. Today, Vol. 75, pp. 287-295 (2002).
Chao, Y. C., and Chen, G. B., “Numerical simulation of catalytic ignition of gasified biomass on platinum”, The Third Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea, pp. 215-218 (2001).
Fernandez-Pello, A. C.,“Micro-power generation using combustion:issues and approaches”Proc. Combust. Inst., Vol. 29, pp. 883-899 (2002).
Hardesty, D. R., and Weinberg, F. J., “Converter efficiency in burner systems producing large excess enthalpies”, Combust. Sci. Technol., Vol. 12, pp. 153-157 (1976).
Jones, A. R., Lloyd, S. A., and Weinberg, F. J., “Combustion in heat exchangers”, Proc. R. Soc. (London) A, Vol. 360, pp. 97-115 (1978).
Jugjai, S., and Rungsimuntuchart, N., “High efficiency heat-recirculating domestic gas burners”, Exp. Thermal Fluid Sci., Vol. 26, pp.581-592 (2002).
Katsuki, M., and Hasegawa, T., “The science and technology of combustion in highly preheated air”, Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 3135-3146 (1998).
Kohshi, S., Hardiyanto, W., Shingo, M., Yasushi, O., and Koichi, E., “Low temperature oxidation of methane over Pd catalyst supported on metal oxides”, Catal. Today, Vol. 59, pp. 69-74 (2000).
Kohshi, S., Koichi, E., Hardiyanto, W., Masato, M. and Hiromichi, A., “Property of Pd-supported catalysts for catalytic combustion”, Catal. Today, Vol. 28, pp. 245-250 (1996).
Kotani, Y., Behbahani H. F., and Takeno, T., “An excess enthalpy flame combustor for extended flow ranges”, Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 2025-2033 (1984).
Kuper, W. J., Blaauw, M., Berg, F., and Graaf, G. h., “Catalytic combustion concept for gas turbines”, Catal. Today, Vol. 47, pp. 377-389 (1999).
Lloyd, S. A., and Weinberg, F. J., “A burner for mixtures of very low heat content”, Nature, Vol. 251, pp. 47-49 (1974).
Lloyd, S. A., and Weinberg, F. J., “Limits to energy release and utilization from chemical fuels”, Nature, Vol. 257, pp. 367-370 (1975).
Maruta, K., Takeda, K., Sitzki, L., Borer, K., and Ronney, P. D., “Catalytic combustion in microchannel for MEMS power generation”, The Third Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea, pp. 219-222 (2001).
Ozawa, Y., Fujii, T., Kikumoto, S., Sato, M., Fukuzawa, H., Saiga, M., and Watanabe, S., “Development of a low NOx catalytic combustor for a gas turbine”, Catal. Today, Vol. 26, pp. 351-357 (1995).
Pfefferle, W. C., Heck, R. M., Carrubba, R. M., and Roberts, G. W., “Catathermal combustion: a new process for low-emission fuel conversion”, ASME Paper 75-WA/Fu-1 (1975).
Pfefferle, W. C., and Pfefferle, L. D., “Catalytically stabilized combustion”, Prog. Energy Combust. Sci., Vol. 12, pp. 25-41 (1986).
Schlegel, A., Benz, P., Griffin, T., Weisenstein, W. and Bockhorn, H., “Catalytic stabilization of lean premixed combustion: method for improving NOx emissions”, Combust. Flame, Vol. 105, pp. 332-340 (1996).
Schlegel, A., Buser, S. and Benz, P., “NOx formation in lean premixed noncatalytic and catalytically stabilized combustion of propane”, Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1019-1026 (1994).
Seo, Y. S., Cho, S. J., Kang. S. K., and Shin, H. D., “Experimental and numerical studies on combustion characteristics of a catalytically stabilized combustor”, Catal. Today, Vol. 59, pp. 75-86 (2000).
Shy, S. S., I, W. K., and Lin, M. L., “A new cruciform burner and its turbulence measurements for premixed turbulent combustion study”, Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114 (2000a).
Shy, S. S., Lin, W. J., and Wei, J. C., “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. (London) A, Vol. 456, pp. 1997-2019 (2000b).
Shy, S. S., Lin, W. J., and Peng, K. Z., “High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner”, Proc. Combust. Inst., Vol. 28, pp. 561-568 (2000c).
Sitzki, L., Borer, K., Schuster, E., and Ronney, P. D., “Combustion in microscale heat-recirculating burner”, The Third Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea, pp. 473-476 (2001a).
Sitzki, L., Borer, K., Wussow, S., Schuster, E., Muruta, K., and Ronney, P. D., “Combustion and power generation in microscale excess enthalpy burners”, The Second Joint Meeting of the U.S. Section of the Combustion Institute, March 26-29, Oakland, pp. 1-7 (2001b).
Tanaka, R., Shinoda, M., and Arai, N., “Combustion characteristics of a heat-recirculating ceramic burner using a low-calorific-fuel”, Energy Conversion and Management, Vol. 42, pp. 1897-1907 (2001).
Weinberg, F. J., “Combustion temperatures: the future”, Nature, Vol. 233, pp. 239-241 (1971).
Weinberg, F. J., Rowe, D. M., Min, G., and Ronney, P., “On thermoelectric power conversion from heat re-circulating combustion systems”, Proc. Combust. Inst., Vol. 29, pp.941-947 (2002).
金志剛,“燃氣測試技術手冊”天津大學出版社(1994)。
許紘瑋,“觸媒穩駐燃燒之初步研究”國立成功大學航空太空工程研究所,碩士論文(1998)。
楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”國立中興大學環境工程研所,碩士論文(2000)。
陳冠邦,“氣化生質能於白金蜂巢式反應器之觸媒燃燒研究”國立成功大學航空太空工程研究所,博士論文(2001)。
王志華,“潔淨能源:超焓燃燒器研發”國立中央大學機械工程研所,碩士論文(2002)。
陳彥志,“潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測”國立中央大學機械工程研所,碩士論文(2002)。
指導教授 施聖洋(Shenqyang Steven Shy) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明