博碩士論文 90324001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.229.122.166
姓名 林佑彥(Yu-Yen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 由花生殼製備鋰離子電池高電容量負極碳材料
(High-capacity carbons derived from peanut shells as anode materials for lithium ion batteries)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 鋰離子電池層狀結構陰極材料合成與改質研究★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究
★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究
★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究
★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文之研究內容是以花生殼作為先驅物,經由適當之製孔劑處理後,於600~900℃下煆燒後合成無次序碳材以作為鋰離子電池陽極材料,論文共分三個主題進行:(1)比較不同比例製孔劑與煆燒溫度效應對花生殼處理所得碳粉之影響;(2)探討花生殼以製孔劑處理前後煆燒所得碳粉之電化學差異;(3)不同電流速率電解製孔劑處理花生殼碳粉之電池性能影響。
首先是利用可大幅增加表面積的製孔劑,處理台灣自有的農業廢棄物—花生殼,改變煆燒條件,期望得到具有高可逆電容量之碳材料。
花生殼以不同比例製孔劑處理(P=1~5),500℃下煆燒製得之碳粉進行充放電測試,以P=5所合成的碳粉具有較佳之可逆電容量,第一次放電電容量為4765 mAh/g,充電電容量為1385 mAh/g。當P=1或2時,幾乎無電容量。
花生殼以P=5之製孔劑比例處理,改變不同煆燒溫度所製得碳粉,由測試結果可知所有樣品之第一次循環不可逆電容量均相當大,尤以500℃所合成的碳粉為最大,隨著煆燒溫度增加,不可逆及可逆電容量同時減少。當煆燒溫度為600℃時則有最佳之電容量,其第一次放電電容量為3504 mAh/g,充電電容量為1650 mAh/g,至第10次循環時,可逆電容量仍高達1504 mAh/g。
第二部份比較花生殼未經處理及利用製孔劑處理,比較兩者製得碳粉之電化學性質差異,未處理的碳粉在電壓範圍為1~2 V之間有一寬闊的還原峰存在,當電壓低於0.7V以下,為一般文獻中所報導陽極材料提供電容量的電壓範圍;如以製孔劑處理後,從電壓1.3伏特開始處即有明顯還原峰存在。並且我們可由CV圖形中看出兩種材料之循環穩定性,經處理所製得之碳粉自第二次循環後還原峰就無變化,故循環穩定性較未處理者佳。
我們亦可利用交流阻抗分析結果計算交換電流密度,以表示材料之反應速率,而當我們利用製孔劑處理後,交換電流密度皆比未處理者高,表示該系統具有較佳之反應速率。
比較花生殼未處理與花生殼以製孔劑處理所得碳粉之阻抗,Re係數與鋰的嵌入量多寡無關, Rp則是先增加再降低,增加的原因是由於電解質液產生還原反應所致,表示材料表面結構鬆散,容易與電解質液發生反應,而未處理花生殼在低於0.32V下材料表面結構則相對較穩定,是由於有鈍化膜產生保護的緣故。
最後一部份則以不同電流速率,電解製孔劑處理花生殼,600℃下煆燒所得碳粉並組裝成電池測試,由長循環數據可知,利用0.4C rate電解後,其電池性能為最佳,電池以特徵曲線方式測試,當測試的電流速率為0.2、0.4與0.8C-rate,可逆電容量數值分別約為900、700及500mAh/g,甚至在1.6C-rate高速率的充放電條件下,測試了約130次的循環後,可逆電容量仍有300mAh/g以上。
如依照第一次循環可逆電容量對電解速率大小作圖,不同速率電解處理過後,以0.4C rate的效果為最佳,高或低於0.4C-rate其電解效果皆不好,電容量對電解速率作圖呈一個具有極大值的曲線。
摘要(英) This thesis describes the structural and lithium-insertion properties of pyrolytic carbons derived from peanut shells. Peanut shells were treated with different weight ratios of a proprietary porogenic agent and carbonized between 600 and 900°C. The work covers three areas: (1) optimization of the porogen-to-peanut shell weight ratio (P) and the pyrolysis temperature, (2) comparison of the lithium-insertion properties of carbons obtained from untreated and porogen-treated peanut shells, and (3) charge-discharge studies with pre-lithiated carbons.
Porogen treatment was implemented in order to alter the pore structure and effect a manifold increase in the surface area of the carbonaceous product. Both the untreated and porogen-treated shells yielded carbons with poor crystallinity, but the pore diameter of the latter was twice as large and the surface area was 66 times greater than the untreated carbon. Both types of products were primarily non-parallel single sheets of carbons, as determined by the values of their R factors. While porogen can increase the number of uncorrelated graphene fragments, leading to more lithium accommodation sites, the pyrolysis temperature can induce breakage of the links between adjacent sheets and encourage their parallel alignment. The products obtained with P = 5 at 500°C gave a first-cycle lithium insertion capacity of 4765 mAh/g, which is the highest value reported for any lithium-insertion material so far. At a pyrolysis temperature of 600°C, the P = 5 product gave the optimal insertion and deinsertion capacities, their values in the first cycle being 3504 and 1650 mAh/g, respectively. The deinsertion capacity of this sample in the tenth cycle was very high at 1504 mAh/g. However, the irreversible capacities of these carbons, especially in the first cycle, were too large to be practical.
The large irreversible capacities were reflected in the cyclic voltammograms of the carbons, where the absence of a significant anodic peak indicated that only part of the inserted lithium could be retrieved. In the case of the P = 0 carbon, lithium insertion was observed below 0.7 V vs. Li+/Li, while in the P = 5 carbon, the insertion process commenced from about 1.3 V. Moreover, the decrease in the insertion current with cycle number was lower in the case of the porogen-treated carbon than with the untreated carbon, suggesting the former had better capacity retention. No distinguishable current peaks were seen in the cyclic voltammograms, indicating lack of any long-range ordering, which precludes staging behavior during the insertion and deinsertion processes. The P = 5 carbon also exhibited higher exchange current densities, which would imply that the kinetics of the insertion reaction was faster than when the carbon was untreated. Electrochemical impedance studies showed that the resistance due to the formation of surface film increased when the carbon was charged. However, the slight increase in resistance suggests that the products of the surface reduction are either soluble in the electrolyte or are loosely held to the surface.
Charge-discharge studies with the porogen-treated carbon, pre-charged and discharged prior to use in coin cells, indicated that the first-cycle reversible capacity was the greatest when the charge-discharge rate was 0.4 C. At this rate, the carbon maintained capacities of about 325 mAh/g for 20 cycles, and then stabilized at around 380 mAh/g for over 70 cycles. Signature curves of the carbon showed that the deliverable capacities at charge-discharge rates of 0.2, 0.4, 0.8 C were 900, 700 and 500 mAh/g, respectively. Even at the 1.6 C rate, more than 300 mAh/g could be tapped from the carbon after 130 cycles.
關鍵字(中) ★ 高電容量碳材料
★ 鋰離子電池
★ 花生殼
關鍵字(英) ★ high-capacity carbon materials
★ lithium-ion battery
★ peanut shells
論文目次 目錄
摘要…………………………………………………………………………………………….I
誌謝………………………………………………………………………………….………...V
目錄…………………………………………………………………………………………..VI
圖目錄……………………………………………………………………...……………….VIII
表目錄…………………………………………………………………...…………………….X
第一章 緒論………………………………………………………………………………….01
1-1 簡介………………………………………………………………………………….01
1-2 研究目的與架構…………………………………………………………………….03
第二章 文獻回顧…………………………………………………………………………….06
2-1 碳材料發展現況…………………………………………………………………….06
2-1-1 負極碳材料種類…………………………………………………….………...06
2-1-2 鋰離子嵌入釋出碳層機制………………………………………….………...09
2-2 新型碳材料發展近況……………………………………………………………….10
2-2-1 摻雜型碳(Doped Carbons)……………………………………………………10
2-2-2 氣相成長碳纖維(Vapor Growth Carbon Fiber, VGCF)…………….………12
2-2-3 富勒烯(Fullerene)……………………………………………………………..14
2-2-4 奈米碳管(Carbon Nanotube,CNT)………………………………….………...15
2-2-5 含大量孔洞碳材(Macroporous Carbon)…………………………….………..17
2-2-6 奈米碳球(Carbon Nanocapsules)……………………………………………..19
2-3 天然先驅物合成之碳粉…………………………………………………………….20
2-3-1 棉花………………………………………………………………….………...20
2-3-2 糖…………………………………………………………………….………...20
2-3-3 食用經濟作物……………………………………………………….………...21
2-3-4 植物表皮與果實殼………………………………………………….………...22
2-4 花生殼之組成與應用……………………………………………………………….23
2-4-1 花生殼之組成與性質……………………………………………….………...23
2-4-2 花生殼的應用………………………………………………………... ………23
2-4-3 花生殼製備鋰離子電池負極碳材料………………………………... ………25
第三章 實驗方法…………………………………………………………………....………26
3-1 實驗儀器…………………………………………………………………………….26
3-2 實驗藥品器材……………………………………………………………………….27
3-3 實驗步驟…………………………………………………………………………….28
3-3-1 材料合成……………………………………………………………... ………28
a. 花生殼以不同比例製孔劑處理………………………………….. ………28
b. 花生殼以P=5之比例製孔劑處理,探討不同溫度對碳粉之效應. ……...29
3-3-2 材料鑑定分析………………………………………………………... ………29
a. 熱重與熱穩定性分析(TGA/DTA)………………………………….……29
b. X光粉末繞射儀(XRD)………………………………………….. ………30
c. 元素分析(EA)……………………………………………………….……30
d. 表面積測試方法(BET)………………………………………….. ………30
e. 穿透式電子顯微鏡(TEM)…………………………………………..……30
3-3-3 硬幣型電池組裝……………………………………………………... ………31
a. 陰極之極片製作………………………………………………….. ………31
b. 硬幣型電池組裝………………………………………………….. ………31
c. 充放電測試……………………………………………………….. ………31
3-3-4 電化學分析…………………………………………………………... ………33
a. 循環伏安分析(Cyclic Voltammetry)………………………………..……33
(1) 實驗條件……………………………………………………..………33
(2) CV電極製作……………………………………………….………...33
b. 交流阻抗測試……………………………………………………………...33
c. 電解步驟……………………………………………………….…………..34
第四章 結果與討論………………………………………………………………………….37
4-1 花生殼材料鑑定分析……………………………………………………………….37
4-1-1 TGA/DTA分析……………………………………………………….………..37
4-1-2 X光繞射(XRD)……………………………………………………………….40
4-1-3 元素分析(EA)………………………………………………………………...43
4-1-4 表面積測試-BET方法………………………………………………………...45
4-1-5 TEM測試結果……………………………………………………….………...45
4-2 電池測試…………………………………………………………………………….47
4-2-1 花生殼以不同比例製孔劑處理,500℃下煆燒製成之碳粉電池測試………47
4-2-2 花生殼以P=5之比例製孔劑處理,不同溫度下煆燒製成之碳粉電池測試...50
4-2-3 花生殼以P=5比例製孔劑處理,不同溫度煆燒製得碳粉高溫測試(55℃)…53
4-2-4 不同截止電壓對長循環電池性能之影響實驗…………………….………...54
4-2-5 二次熱處理對材料之影響………………………………………….………...56
4-3 電化學分析………………………………………………………………………….57
4-3-1 循環伏安測試……………………………………………………….………...57
4-3-2 交流阻抗分析……………………………………………………….……...…60
4-4 電解實驗…………………………………………………………………………….70
第五章 結論………………………………………………………………...………………77
5-1 鑑定分析…………………………………………………………………………….77
5-2 電池測試…………………………………………………………………………….78
5-3 電化學分析………………………………………………………………………….78
5-4 電解測試…………………………………………………………………………….79
第六章 參考文獻…………………………………………………………………………...80
附錄:碩士論文研究兩年期間,有關研究成果所發表論文狀況說明……………………...84
參考文獻 01. 李日琪, 碩士論文, 國立中央大學, 臺灣, 中華民國 (2000).
02. 陳春來, 碩士論文, 國立中央大學, 臺灣, 中華民國 (2001).
03. Linden, Mcgraw-Hill Inc., Chap. 11, p. 1-2 (1984).
04. G. Pistoria, Elsevier, Chap. 1. p.3 (1994).
05. 費定國, 李日琪, 工業材料, 165, 152 (2000).
06. S. Yata et al., Abstract of 34th Battery Symposium, Japan, p.63 (1993).
07. K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, Science, 264, 556 (1994).
08. J. S. Xue, and J. R. Dahn, J. Electrochem. Soc., 142, 3668 (1995).
09. W. Xing, J. S. Xue, and J. R. Dahn, J. Electrochem. Soc., 143, 3046 (1996).
10. E. Peled, V. Eshkenazi, and Y. Rosenberg, J. Power Sources, 76, 153 (1998).
11. S. I. Yamada, H. Imoto, K. Sekai, and M. Nagamine, Extended Abstracts of 191st Electrochemical Society Meeting, 4-9, 85 (1997).
12. R. E. Franklin, Proc. Roy. Soc. London Ser. A, 209, 196 (1951).
13. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 270, 590 (1995).
14. Y. P. Wu, C. R. Wan, C. Y. Jiang, S. B. Fang, and Y. Y. Jiang, Carbon, 37, 1901 (1999).
15. J. R. Dahn, W. Xing, and Y. Gao, Carbon, 35, 825 (1997).
16. E. Buiel, A. E. George, and J. R. Dahn, J. Electrochem. Soc., 145, 2252 (1998).
17. H. Fujimoto, A. Mabuchi, K. Tokumitsu, T. Kasuh, and N. Akuzawa, Carbon, 32, 193 (1994).
18. K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, J. Electrochem. Soc., 142, 716 (1995).
19. M. Endo, J. Nakayama, Y. Sasabe, T. Yakahashi, amd M. Inagaki, Tanso, 165, 282, in Japanese (1994).
20. K. Tatsumi, K. Zaghib, Y. Sawada, H. Abe, and T. Ohsaki, J. Electrochem. Soc., 142, 1090 (1995).
21. B. M. Way, and J. R. Dahn, J. Electrochem. Soc., 141, 907 (1994).
22. T. Nakajima, K. Koh, and M. Takashima, Electrochimica Acta, 43, 883 (1998).
23. T. Hagio, M. Nakamizo, and K. Kobayashi, Carbon, 27, 159 (1989).
24. M. Endo, C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, and M. S. Dresselhaus, Phy. Rev, B858, 8991 (1998).
25. M. Morita, T. Hanada, H. Tsutsumi, M. Kawaguchi, and Y. Matsuda, J. Electrochem. Soc., 139, 1227 (1992).
26. M. Endo, Y. Nishimura, T. Takahashi, K. Takeuchi, M. S. Dresselhaus, J. Phys. Chem. Solids, 57, 725 (1996).
27. Y. Nishimura, T. Yakahashi, T. Tamaki, M. Endo, and MS. Dresselhaus, Tanso, 172, 89 (1996).
28. N. Takami, A. Satoh, M. Hara, and T. Ohsaki, J. Electrochem. Soc., 142, 2564 (1995).
29. T. Ohsaki, M. Kanda, Y. Aoki, H. Shiroki, and S. Suzuki, J. Power Sources, 68, 102 (1997).
30. H. W. Kroto, J. R. Heath, S. C. O’brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162 (1985).
31. R. F. Bunshan, S. Jou, S. Prakash, and H. J. Doerr, J. Phys. Chem., 96, 6869 (1992).
32. 薛泓岳, 碩士論文, 國立台灣大學, 台灣, 中華民國 (2002).
33. S. Iijima, Nature, 354, 56 (1991).
34. Y. Ando, X. Zhao, H. Shimoyama, G. Sakai and K. Kaneto, J. Inorg. Mater., 1, 77 (1999).
35. 林惠娟, 陶業季刊, 第二十一卷第一期, p.3 (2002).
36. X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi, and Y, Ando, Carbon, 35, 775, (1997).
37. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, J. Electrochem. Soc., 146, 1696 (1999).
38. G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairacs, and B. Simon, Chem. Phys. Lett., 312, 14 (1999).
39. A. S. Claye, J. E. Fisher, C. B. Huffman, A. G. Rinzler, R. E. Smalley, J. Electrochem. Soc., 147, 2845 (2000).
40. C. T. Kresege, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992).
41. S. Han, and T. Hyeon, Chem. Commun., 1955 (1999).
42. G. R. Yi, J. H. Moon, and S. M. Yang, Chem. Mater., 13, 2613 (2001).
43. C. J. Meyers, S. D. Shah, S. C. Patel, R. M. Sneeringer, C. A. Bessel, N. R. Dollahon, R. A. Leising, and E. S. Takeuchi, J. Phys. Chem. B, 105, 2143 (2001).
44. R. S. Roff, D. C. Lorents, B. Chan, R. Malhotra, and S. Subramoney, Science, 259, 346 (1993).
45. 黃贛麟, “填充磁性金屬奈米碳球的製造方法”, 2002, 專利申請中.
46. T. Oku, T. Kusunose, T. Hirata, R. Hatakeyama, N. Sato, K. Niihara, and K. Suganuma, Diamond and Related Materials, 9, 911 (2000).
47. 高昀成, 碩士論文, 國立中央大學, 臺灣, 中華民國 (1997).
48. 陳冠良, 碩士論文, 國立中央大學, 臺灣, 中華民國 (1999).
49. G. T. K. Fey, and C. L. Chen, J. Power Sources, 97-98, 47 (2001).
50. H. T. Stalker, Field Corps Research, 53, 205 (1997).
51. 黃龍泰, 碩士論文, 國立台灣科技大學, 臺灣, 中華民國 (2001).
52. 高欽煌, 碩士論文, 私立逢甲大學, 臺灣, 中華民國 (2001).
53. 邵志忠, “豆類加工食品產業發展趨勢分析”, 食品工業發展研究所 (1996).
54. 周楚洋,“農業廢棄物處理之回顧與前瞻 ”, 國立台灣大學, 臺灣, 中華民國.
55. 蔡金池, 高雄區農業專訊, 第26期, (1998).
56. 黃輝源, “廢棄物清理現況及展望”, 行政院環境保護署.
57. 謝慶芳, 台中區農業專訊, 第18期, p.9 (1997).
58. K. Periasamy, and C. Namasivayam, Chemosphere, 32, 769 (1996).
59. K. Periasamy, and C. Namasivayam, Waste Management, 15, 63 (1995).
60. 倪禮豐, 花蓮區農業專訊, 第26期, (1998).
61. W. Xing, J. S. Xue, T. Zheng, A. Gibaud and J. R. Dahn, J. Electrochem. Soc., 143, 3482 (1996).
62. T. Zheng, Y. Liu, E. W. Fuller, S. Tsehg, U. von Sacken and J. R. Dahn, J. Electrochem. Soc., 142, 2581 (1995).
63. H. Q. Xiang, S. B. Fang and Y. Y. Jiang, J. Electrochem. Soc., 144, L187 (1997).
64. T. Zheng, W. R. Mckinnon and J. R. Dahn, J. Electrochem. Soc., 143, 2137 (1995).
65. Y. E. Eli, and V. R. Koch, J. Electrochem. Soc., 144, 2968 (1997).
66. Z. Jiang, M. Alamgir, and K. M. Abraham, J. Electrochem. Soc., 142, 333 (1995).
67. C. Natarajan, H. Fujimoto, A. Mabuchi, K. Tokumitsu, and T. Kasuh, J. Power Sources, 92, 187 (2001).
68. W. Xing, R. A. Dunlap, and J. R. Dahn, J. Electrochem. Soc., 145, 62, (1998).
69. N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Electrochimica Acta, 42, 2537 (1997).
70. J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. M. Wa, Electrochimica Acta, 38, 1179 (1993)
71. M. Nishizawa, H. Koshika, R. Hashitani, T. Itoh, T. Abe, I. Uchida, J. Phys. Chem. B, 103, 4933(1999).
72. K. Dokko, Y. Fujita, M. Mohamedi, M. Umeda, I. Uchida, J.R. Selman, Electrochim. Acta, 47, 933 (2001).
73. E. Peled, J. Electrochem. Soc., 126, 2047 (1979).
74. R. Fong, U. von Sacken, J.R. Dahn, J. Electrochem. Soc., 137, 2009 (1990).
75. J.O. Besenhard, M. Winter, J. Yang, W. Biberacher, J. Power Sources, 51, 228 (1995).
76. M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, Electrochemical Acta, 45, 1781 (2000).
77. Y. M. Choi, S. Pyun, J. S. Bae, and S. I. Moon, J. Power Sources, 56, 25 (1995).
78. P. Vanysek, G. Sandi, Ext. Abstr. Electrochem. Soc., Vol. 94-2, The Electrochemical Society, Pennington, New Jersey (Oct. 1994), Abstr. 587, p. 920.
79. H. Asahina, M. Kurotaki, A. Yonei, S. Yamaguchi, S. Mori, J. Power Sources, 68, 249 (1997).
80. K. Zaghib, K. Tatsumi, Y. Sawada, S. Higuchi, H. Abe, T. Ohsaki, J. Electrochem. Soc., 146, 2784 (1999)
81. G. T. K. Fey, C. Z. Lu, T. Prem Kumar, J. Power Sources, 115, 332 (2003).
82. A. J. Bard, L. R. Faulkner, Electrochemical Methods – Fundamentals and Applications, John Wiley and Sons, New York (1980) p. 328.
指導教授 費定國(G. Ting-Kuo Fey) 審核日期 2003-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明