博碩士論文 90324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.138.85.72
姓名 林永河(Yeong-Her Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 覆晶封裝中電遷移效應導致之銅溶解現象
(Electromigration Induced Cu Dissolution in Flip Chip Packages)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ 先進半導體封裝技術中之金脆效應及其有效抑制方法★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料
★ 覆晶接點與錫電路之電遷移微結構變化模式研究★ 電遷移對銅原子在熔融錫鉛銲料中擴散行為之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文報導覆晶封裝之銲點中電遷移所引起之銅墊層快速溶解現象。實驗之試片包含組成為錫鉛共晶之銲點,這些銲點接合了矽晶片與印刷電路板。在矽晶片端之金屬墊層是純銅,而在印刷電路板端之金屬墊層是金/鎳/銅之三層結構。將這些銲點通入不同方向之電流, 電流密度值為 2×104 A/cm2 與 4×104 A/cm2,而環境溫度設定為室溫、70℃與100℃。不論何種電流密度或溫度, 通電之銲點皆因為非對稱之區域性銅溶解現象而失效。此現象發生在陰極電子流入之區域晶片端。這些被溶解之銅會以銅原子之型態遷移至錫鉛銲點中與錫原子反應生成Cu6Sn5之界金屬沉積於陽極電子流出之區域電路板端。造成區域性銅溶解的發生是因為高電流密度所引發的電遷移效應,及巨大的電流密度差所造成之電子流擁擠現象。這些銅溶解之區域會被銲點中之銲料所迴填(銲料移動之方向與電子流相反)。銲點失效之位置皆發生在迴填銲料與殘存銅導線之間,這是因為迴填入導線之錫鉛銲料必須承受更高之電流密度(由於導線之截面積小於銲點之截面積)。然而,電遷移所引起之銅墊層快速溶解並不會發生於印刷電路板端,因為銅上覆蓋一層鎳。而鎳墊層有較好之抗電遷移能力。因此,我們可得知在覆晶封裝應用上,可利用鎳層之保護防止銅溶解現象。
摘要(英) The phenomenon of Cu dissolution induced by electromigration at flip chip solder joints is reported. A pair of eutectic Sn-Pb solders interconnected between a Si chip and a FR4 substrate is under current stressing with opposite electron current direction. The local current density in the solder ball and in the Cu conducting trace is 2x104 A/cm2 and 4.6x105 A/cm2 respectively. The ambient temperatures are set at 70 oC and 100 oC. The under-bump metallization (UBM) on the chip side is the Cu pad with a conducting trace and on the substrate side is Au/Ni/Cu three-layer structure.
No matter what ambient temperature is, the solder joints failed due to an asymmetrical and localized dissolution of the Cu metallization on the cathode side. The rate of Cu dissolution at the ambient temperature of 100 oC is faster than at 70 oC. The dissolved Cu, including the Cu pad and the Cu conducting trace on the chip side, migrated into solder to form the Cu6Sn5 intermetallics deposited on the substrate side. The Cu atoms drifted to the anode side due to electromigration induced by high current density and current crowding effect caused by huge gradient of current density. The dissolution of Cu coincides with solder back-filled. The site of failure was at the conducting trace that had been back-filled with solder, where a much greater current density was present due to a smaller cross-section.
An in-situ experiment is taken at the current density of 4x104 A/cm2 and room temperature of 30 oC. The phenomenon of Cu dissolution can also be observed on the chip side. Thus, Cu dissolution can be induced at room temperature when the current density is high enough.
The phenomenon of Cu dissolution does not happen on the substrate side, because this Cu is protected by a layer of Ni. Controlling the thickness of Ni UBM can inhibit the electromigration effect in flip chip packages because the Ni has good electromigration resistance.
關鍵字(中) ★ 覆晶封裝
★ 電遷移
★ 銅溶解
★ 銅製程
★ 可靠度
關鍵字(英) ★ Flip chip packages
★ Electromigration
★ Cu dissolution
★ Cu interconnect
★ Reliability
論文目次 CHAPTER 1. Introduction……………...………………1
CHAPTER 2. Literature Review……………….……….5
2.1 Flip chip package……………………………..……………………....5
2.1.1 Introduction of flip chip………………………………………..5
2.1.2 Flip chip process……………………………………………….7
2.1.2.1 Under-bump metallization…….………………………..8
2.1.2.2 Solder bumping………………………………………...8
2.1.2.3 Assembly……………………………………………...13
2.1.2.4 Underfilling…………………………………………...14
2.1.3 Types of flip chip bump structures……………………………14
2.1.4 Benefits of flip chip…………………………………………..16
2.2 Electromigration………………………………………………..…...17
2.2.1 Introduction of electromigration……………………………...17
2.2.2 Driving force of electromigration……………………….…….18
2.2.3 Measurement of electromigration…………………………….21
2.2.4 Joule heating effect……………………………………………24
2.2.5 MTTF of electromigration…………………………………….26
2.3 Electromigration in Sn-Pb solder stripes & lines…………….……..27
2.3.1 Electromigration in solder stripes……………………………..27
2.3.2 Electromigration in solder lines……………………………….31
2.4 Electromigration in flip chip solder joints…………………………..33
2.5 Thermomigration in Sn-Pb solder joints……………………………40
CHAPTER 3. Experiments……………………...…….43
3.1 Samples preparation………………………………………..……….44
3.1.1 Chip side………………………………………………………44
3.1.2 Substrate side………………………………………………….47
3.1.3 Solder joints…………………………………………………...48
3.2 Applying current……………………………………………..……...50
3.2.1 Part A: Applying current on different flip chip packages……..50
3.2.2 Part B: In–situ experiments during current stressing………....52
3.3 Measurement of chip surface temperature………………...………...54
3.4 Metallurgical analysis……………………………………………….56
3.4.1 Metallurgical analysis of part A samples……………………...56
3.4.2 Metallurgical analysis of part B samples……………………..56
CHAPTER 4. Results………………………………….57
Part A: Applying current on different flip chip packages
4.1 Temperature distribution on the chip………………………………..57
4.2 Phenomena of Cu dissolution…………………………………...…..64
4.3 Migration of Pb-rich phase……………………………………...…..83
4.4 Formation of intermetallics……………………………………...….87
Part B: In-situ experiments during current stressing
4.5 In-situ temperature record…………………………………………..89
4.6 In-situ observation of Cu dissolution…………………………...…..90
CHAPTER 5. Discussion………………………….....102
CHAPTER 6. Conclusion…………………………....107
CHAPTER 7. Future Work…………………………..109
References……………………………………………111
參考文獻 1.J. H. Lau, in “Flip Chip Technologies,” edited by J. H. Lau, (McGraw-Hill, N. Y., 1995) p. 28.
2.1999 International Roadmap for semiconductor Technology, Semiconductor Industry Association, San Jose, CA.
3.C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, 58 (1999).
4.C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys. 88, 5703 (2000).
5.Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys. 89, 4332 (2001).
6.S. Brandenbery and S. Yeh, in "Surface Mount International Conference and Exposition," SMI 98 Proceedings, p. 337 (1998).
7.T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, J. Appl. Phys. 89, 3189 (2001).
8.P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J. Sheaffer, in “Electronics Packaging Handbook,” edited by R.R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, (Chapman & Hall, M. A., 1999) p. 2-129.
9.D. Patterson, P. Elenius, and J. Leal, EPP Printed Circuit Board, May, p. 30 (1998).
10.T. Kawanobe, K. Miyamoto, Y. Inabe, and H. Okudaira, “ Electronic Component Conference,” IEEE 31th Proceedings, p. 149 (1981).
11.J. H. Lau, Low Cost Flip Chip Technologies, (McGraw-Hill, N. Y., 2000) p. 14.
12.K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists, (Pearson Education POD, 1996) p. 355.
13.D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, (Van Nostrand Reinhold, U. K., 1984) p. 56.
14.J. H. Zhao, in “Electromigration and Electronic Device Degradation,” edited by A. Christou, (John Wiley & Sons, N.Y., 1993) p. 167.
15.J. W. Mayer and S. S. Lau, Electronic Materials Science: For Integrated Circuits in Si and GaAs, (Prentice Hall, N. J., 1989) p. 455.
16.A. D. Kraus and A. B. Cohen, Thermal Analysis and Control of Electronic Equipment, (Hemisphere, W. A., 1983) p. 81.
17.T. F. Irvine Jr., in “Handbook of Heat Transfer,” edited by W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, (McGraw-Hill, N. Y., 1998) p. 2.1.
18.V. V. Calmidi and R. L. Mahajan, in "Electronic Components and Technology Conference," ECTC 97 Proceedings, p. 1163 (1997).
19.C. Kittel, Introduction to Solid State Physics, (John Wiley & Sons, N.Y., 1976) p. 178.
20.P. F. Tang, in “Electromigration and Electronic Device Degradation,” edited by A. Christou, (John Wiley & Sons, N.Y., 1993) p. 64.
21.T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys. 90, 4502 (2001).
22.E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).
23.H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82, 1045 (2003).
24.V. V. Calmidi and R. L. Mahajan, in "Electronic Components and Technology Conference," ECTC 97 Proceedings, p. 1163 (1997).
25.C. J. Geankoplis, Transport Processes and Unit Operations, (Prentice Hall, Singapore, 1993) p. 214.
26.M. Pecht and P. Lall, in “Electromigration and Electronic Device Degradation,” edited by A. Christou, (John Wiley & Sons, N.Y., 1993) p. 79.
27.T. Y. Tom Lee, T. Y. Lee, and K. N. Tu, in "Electronic Components and Technology Conference," ECTC 2001 Proceedings, (2001).
28.L. L. Mercado, T. Y. Tom Lee, and J. Cook, IEEE Trans. Adv. Pack. 24, 66 (2000).
29.B. Setlik, D. Heskett, K. Aubin, and M. A. Briere, IEEE proceeding 5, 159 (1997).
30.T. Y. Chiang, B. Shieh, and K. C. Saraswat, “ Symposium on VLSI Technology,” IEEE Proceedings, p. 38 (2002).
31.R. E. Simons, V. W. Antonetti, W. Nakayama, and S. Oktay, in “Electronics Packaging Handbook,” edited by R.R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, (Chapman & Hall, M. A., 1999) p.1-314.
32.H. Matsushima, S. Baba, Y. Tomita, M. Watanabe, E. Hayashi, and Y. Takemoto, in "Electronic Components and Technology Conference," ECTC 98 Proceedings, (1998).
33.K. Nakagawa, S. Baba, M. Watanabe, H. Matsushima, K. Harada, E. Hayashi, Q. Wu, A. Maeda, M. Nakanishi, and N. Ueda, in "Electronic Components and Technology Conference," ECTC 2001 Proceedings, (2001).
34.C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Mater. 28, 1231 (1999).
35.J. I. Goldstein, A. D. Roming, D. E. Newbury, C. E. Lyman, P. Echlin, C. Fiori, D. C. Joy, and E. Lifshin, (Plenum Press. N. Y., 1992) p. 149.
36.J. D. Wu, P. J. Zheng, K. Lee, C. T. Chiu, and J. J. Lee, in "Electronic Components and Technology Conference," ECTC 2002 Proceedings, p. 452 (2002).
37.J. S. Kang, R. A. Gagliano, G. Ghosh, and M .E. Fine, J. Electron. Mater. 31, 1238 (2002).
38.Y. G. Lee and J. G. Duh, J. Mater. Sci.-Mater. Ei. 10, 33 (1999).
39.M. Schaefer, R. A. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).
40.C. E. Ho, W. T. Chen, and C. R .Kao, J. Electron. Mater. 30, 379 (2001).
41.C. M. Chen and S. W. Chen, J. Appl. Phys. 90, 1208 (2001).
42.C. M. Chen and S. W. Chen, Acta Mater. 50, 2461 (2002).
43.S. W. Chen and C. M. Chen, JOM 54, (2) 62 (2003).
44.H. Gan and K. N. Tu, in "Electronic Components and Technology Conference," ECTC 2002 Proceedings, p. 1206 (2002).
45.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM 54, (6) 34 (2001).
46.D. Gupta, K. Vieregge, and W. Gust, Acta Metall. 47, 5 (1999).
47.C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, J. Electron. Mater. 31, 584 (2002).
48.K. Zeng and K. N. Tu, Mater. Sci. Eng. R38, 55 (2002).
49.W. J. Choi, E. C. C. Yeh, and K. N. Tu, in "Electronic Components and Technology Conference," ECTC 2002 Proceedings, p. 1201 (2002).
50.K. N. Tu and K. Zeng, in "Electronic Components and Technology Conference," ECTC 2002 Proceedings, p. 1194 (2002).
51.S. Yeh, in "Surface Mount Technology Association," SMTA 2002 Proceedings, p. 373 (2002).
指導教授 高振宏(C. Robert Kao) 審核日期 2003-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明