博碩士論文 90324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.191.181.191
姓名 施宏道(Heng-Dau Shr)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 多面體寡體矽石/甲基丙烯酸脂系之奈米結構 混成材料之研究
(Study polyhedral oligomeric silsequioxanes/ methylacrylate nanostructured hybrid materials )
相關論文
★ 幾丁聚醣摻合PU基材之物性及抑菌研究★ 幾丁聚醣/硫酸軟骨素製成多孔性複合膜之物化性質探討與研究
★ 聚多醣體於組織工程材料應用之研究★ PDMS在NMRI顯影劑上之應用(I)流變性質之探討
★ 環氧樹脂/聚氧化二甲苯摻合體反應性、相行為及機械性質之研究★ 幾丁聚醣於薄膜製程發展及物性之研究
★ 氰酸酯/聚氧化二甲苯摻合體反應性及相行為研究★ 聚二甲基矽氧高分子膠體溶液之研究:NMR顯影劑、NMR訊號及流變性質等探討
★ 聚乳酸(PLA)及乳酸/羥基乙酸共聚合物(PLGA) 於抗癌藥物傳輸系統之研究★ 以電漿處理聚四乙烯表面改質之研究
★ 幾丁聚醣與海藻膠複合被覆薄膜之相關物性與細胞貼覆★ 不同分子量之幾丁聚醣與纖維素摻合於薄膜製程及物性之研究
★ 幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究★ 酪胺酸酵素改質幾丁聚醣在化工廢水處理程序上之應用
★ 以酪胺酸酵素修飾幾丁聚醣 應用於化工程序之研究★ 幾丁聚醣接枝半乳糖簇之材料性質及其肝靶向性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗以Methyl methacrylate (MMA)單體為主,加入與MMA相似官能基Acrylates系統的多面體矽氧烷寡聚物 (Polyheral Oligomeric Silsesquioxanes,POSS)。POSS又細分為兩種,一為MethacrylIsobutyl -POSS【POSS(MA0702)】,另一個為MethacrylEthyl-POSS【POSS(MA0717)】,兩者雙鍵官能基的部分是一樣的,唯一不同的是在Si-O外的碳氫化合物支鏈,分別為butyl與methyl,其分子量分別為943.64g/mole 和747.27g/mole。藉由奈米粒子POSS與MMA共聚合,來改善PMMA性質。
由FTIR、NMR、DSC、GPC的結果,當POSS重量比例低於20wt%,Free radical:AIBN重量比為1wt%,MMA與POSS能產生共聚合效果,當POSS重量比例超過20wt%時,共聚合效果並不好。加大AIBN重量比為2.5wt%時,POSS重量比例超過20wt%,才能與MMA產生共聚合效果。就不同POSS比較,發現POSS(MA0717)與MMA共聚合效果比POSS(MA0702)好。
由TGA結果可發現,當POSS重量比例越高時,其材料的裂解溫度會越高,同時到了700℃後,殘留量也會隨著POSS的量而增加。材料機械性部分,利用照相以及DMA的分析可知,隨著POSS重量比例的增加,材料硬度也跟著增加;但是POSS重量比例超過20 wt%,材料因為過於硬脆而無法成型,隨著POSS比例越高時,材料成形結果越差。另外由TMA結果發現,材料的Tg點也會隨著POSS重量比例的增加而增加。
最後利用照相以及DMA的分析發現,PMMA本身即為透明材料,當POSS共聚合後,材料仍然成透明狀,所有比例共聚合,於可見光範圍下,透光率居只有0.15~0.35之間,非常透明的狀態。
摘要(英) A series of novel hybrid Methyl methacrylate (MMA) and Polyheral Oligomeric Silsesquioxanes(POSS) are synthesizedand characterized. MethacrylIsobutyl -POSS【POSS(MA0702)】and MethacrylEthyl-POSS【POSS(MA0717)】 have been investigated. Both compounds have the same Acrylates groups, but the inorganic Si8O12 spherical core of POSS surrounded by seven inert organic corner groups are different. One is butyl, the other is methyl. Molecular weights are 943.64g/mole and 747.27g/mole respectively. The influence of the weight fraction of POSS and the corner group composition on properties have been examined.
The prepared polymer hybrids were characterized by FTIR、NMR、DSC、GPC.When the random copolymer contain 20wt% POSS monomer and 1wt% AIBN, the polymer copolymerized completely. While the random copolymer contain more than 20wt% POSS monomer, AIBN must be added 2.5wt%, the polymer copolymerized completely. The copolymerizatoin of MMA with POSS(MA0702) and POSS(0717) respectively, POSS(MA0717)is well reactor than that of POSS(MA0702).
TGA, DMA, TMA and picture of digital camera show that the Td, Tg and roughness is increased as the increased of the ratio of POSS. When the temperature over 700℃, the residual weight increase with increasing the ratio of POSS.
As the result of digital camera and UV, when POSS copolymerized with MMA, the material is also transparent. Under the range of visible , the transmittance is about 0.15~0.35.
關鍵字(中) ★ 甲基丙烯酸脂
★ 多面體寡體矽石
★ 奈米結構
關鍵字(英) ★ nanostructured
★ Study polyhedral oligomeric silsequioxanes
★ methylacrylate
論文目次 目錄
目錄…………………………………………………...……………... I
圖目錄………………………………………………..……………… IV
表目錄………………………………………………………………. IV
中文摘要………………………………………………….…………. VIII
英文摘要(Abstract)…………………………………………….. IX
第一章 序論………………………………………………………… 1
第二章 文獻回顧…………………………………………………… 4
2-1 奈米技術………………………………………………………. 4
2-2 多面體矽氧烷寡聚物 (Polyheral Oligomeric Silsesquioxane,POSS) ……………………………………………
5
2-2-1多面體矽氧烷寡聚物(POSS)的定義與結構…….………….. 5
2-2-2多面體矽氧烷寡聚物(POSS)的製備…………….………….. 8
2-2-3多面體矽氧烷寡聚物(POSS)與高分子單體共聚合………... 11
2-2-4多面體矽氧烷寡聚物(POSS)的特性………………………... 17
第三章 實驗部分…………………………………………………… 22
3-1實驗目的………………………………………………………... 22
3-2 實驗藥品……………………………………...………………... 22
3-3實驗儀器………………………………………………………... 24
3-3-1 實驗儀器一覽表…………………………………………….. 24
3-3-2 傅立葉紅外線光譜分析儀FTIR(Fourier Transform Infrared Spectrometer) ………………………………………….
25
3-3-3 固態核磁共振儀 NMR (Solid Nuclear Magnetic Resonance) ………………………………………………………….
25
3-3-4 熱式差掃描卡量計DSC (Differential Scanning Calorimetry) ……………………………………………………….
25
3-3-5 膠質滲透層析儀 GPC (Gel Permeation Chromatography) ……………………………………………………
25
3-3-6 熱重量分析儀 TGA (Thermal Gravimetric Analyzer) ……………………………………………………………
26
3-3-7 數位相機(Digital Camera)……………………………….. 26
3-3-8 熱機械分析儀 TMA (Thermomechnical Analysis) ……………………………………………………………
26
3-3-9 動態機械分析儀 DMA (Dynamics Mechnical Analyzer) ……………………………………………………………
26
3-3-10 紫外/可見光光譜分析儀 UV (UV-Visible) …………….. 27
3-4 實驗步驟………………………………………………………... 27
第四章 結果與討論…………………………………………………. 30
4-1 傅立葉紅外線光譜分析FTIR(Fourier Transform Infrared Spectrometer) ………………………………………………………
30
4.2 固態核磁共振NMR (Solid Nuclear Magnetic Resonance) …………………………………………………………..
30
4.3 熱視差掃描卡量計DSC (Differential Scanning Calorimetry) ………………………………………………………..
35
4.4 膠質穿透層析儀 GPC (Gel Permeation Chromatography) ……………………………………………………
37
4.5 熱重量分析儀 TGA (Thermal Gravimetric Analyzer) ……………………………………………………………
43
4.6 數位相機(Digital Camera) ………………………………….. 54
4.7 熱機械分析TMA (Thermomechnical Analysis) ……………. 54
4.8 動態機械分析DMA (Dynamics Mechnical Analyzer) ……… 58
4.9紫外/可見光光譜分析UV (UV-Visible) …………………….. 60
第五章 結論…………………………………………………………. 64
參考文獻……………………………………………………………... 66
圖目錄
圖1-1、高分子奈米複合材料演進歷程(一) ……………………… 2
圖1-2、高分子奈米複合材料演進歷程(二) ……………………… 3
圖2-1 梯形(Labber)與多面體(Polyhedron)結構之矽氧烷 ………. 5
圖2-2 多面體矽氧烷結構 ………………………………………… 6
圖2-3 T8多面體矽氧烷結構之鍵角與鍵長 …………………….. 7
圖2-4 多面體矽氧烷結構誤認為cube狀 ……………………….. 8
…圖2-5多面體矽氧烷結構為cage狀 …………………………… 8
圖2-6 合成多面體矽氧烷寡聚物(POSS)步驟圖 ………………… 10
圖2-7 合成多面體矽氧烷寡聚物(POSS)步驟圖 ………………… 10
圖2-8多面體矽氧烷寡聚物(POSS)結構分類圖 …………………. 11
圖2-9多面體矽氧烷寡聚物(POSS)共聚合狀態 …………………. 13
圖2-10 Methystyrene與Styryl-Based-POSS的聚合方程式 …….. 14
圖2-11 Norbornene與POSS-Norbornyl的聚合方程式 …………. 15
圖2-12多面體矽氧烷寡聚物(POSS)可接枝之官能基 …………... 15
圖2-13多面體矽氧烷寡聚物(POSS)可接枝之官能基 ………….. 16
圖2-14多面體矽氧烷寡聚物(POSS)功能圖 …………………….. 17
圖2-15 多面體矽氧烷寡聚物(poss)奈米材料分布情形 ………… 18
圖3-1 MMA與POSS的共聚合實驗 …………………………….. 28
圖3-2 高分子粉末熱壓實驗 ……………………………………… 29
圖4-1多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為1wt% FTIR吸收光譜儀 ……………………….
31
圖4-2多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為2.5wt% FTIR吸收光譜儀 ………………………
32
圖4-3多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,AIBN為1wt% FTIR吸收光譜儀 ……………..………….
33
圖4-4多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,AIBN為2.5wt% FTIR吸收光譜儀 …………..…………..
34
圖4-5多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合,C13-NMR…………………………………………………………..
36
圖4-6多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為1wt% DSC分析圖 .……………………………
38
圖4-7多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為2.5wt% DSC分析圖 ……………………………
39
圖4-8多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,AIBN為1wt% DSC分析圖 ………………………………
40
圖4-9多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,AIBN為2.5wt% DSC分析 ………………………………
41
圖4-10多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為1wt% GPC分析圖 ……………………………
44
圖4-11 多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為2.5wt% GPC分析圖 …………………………
45
圖4-12多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,AIBN為2.5wt% GPC分析圖 …………………………
46
圖4-13多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,AIBN為2.5wt% GPC分析 ……………………………
47
圖4-14多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合, 分子量一覽表 ………………………………………………………
48
圖4-15多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合, 高分子聚合度一覽圖
49
圖4-16多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,TGA分析圖 ……………………………………………
52
圖4-17多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,TGA分析圖 …………………………………………….
53
圖4-18多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,照相分析圖 ……………………………………………
55
圖4-19多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合,照相分析圖 ……………………………………………………..…..
56
圖4-20多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合,照相分析圖 …………………………………………………………
57
圖4-21多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合,DMA分析圖……………………………………………………..…..
59
圖4-22多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合,DMA分析圖……………………………………………………..…..
61
圖4-23多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,UV分析圖……………………………………………….
62
圖4-24多面體矽氧烷寡聚物POSS(MA0717)與MMA以不同比例共聚合,UV分析圖……………………………………………….
63
表目錄
表2-1多面體矽氧烷寡聚物(POSS)與高分子共聚方式優缺點…... 16
表2-2多面體矽氧烷寡聚物(POSS)與其他填充料之特性比較.….. 20
表2-3 Acrylates系統之多面體矽氧烷寡聚物(POSS) ………….… 21
表4-1多面體矽氧烷寡聚物POSS(MA0702)與MMA以不同比例共聚合,Td與殘留量一覽表……………………………………….
51
表4-2 圖4-20多面體矽氧烷寡聚物POSS與MMA以不同比例共聚合,Tg一覽表………………………………………………….
57
參考文獻 參考文獻
1. 黃楓台,奈米與微機電,p1-15,2002
2. 盧成基,徐文泰,奈米材料科技在台灣的展望,工業材料,179期
3. Andre L. et al., Polym. Prep., p235, 2000
4. Kare L., Arkiv for Kemi., 16, p203, 1960
5. Baney R. H. et al., Chem. Rev., 95,pp. 1409-1430, 1995
6. T.S. Haddad, J.D. Lichtenhan, Hybrid Orabin-Inorganic Thermoplastic: Styryl-Based Polyedral Oligomeric Silsesquioxane Polymers, Macromolecules, 29, 7302-7304, 1996
7. J.J. Schwab, J.D. Lichtenhan, Polyhedral Oligomeric Silsesquioxane(POSS)-Based Polymers, Appl. Organometal. Chem., 12, 707-713 ,1998
8. S. Lucke, K. Stoppek-Langner, Polyhedral oligosilsesquioxane(POSS—building blocks for the development of nano-structured materials, Applied Surface Science, 713-715, 1999
9. E.G. Shockey, A G. Bolf, P.F. Jons, J.J. Schwab, K.P. Chaffee, T.S. Haddad and J.D. Lichtenhan, Functionalized Polyhedral Oligosilsesquioxane(POSS) α-Olefin, POSS Epoxy, and POSS Chlorosilane Macromers and POSS-Siloxane Triblocks, Appl. Organometal. Chem., 13, 311-327, 1999
10. B.X. Fu, B.S. Hsiao, S. Pagola, P. Stephens, H. White, M. Rafailovich, J. Sokolov, P.T. Mather, H.G. Jeon, S. Phillips, J. Lichtenhan, J. Schwab, Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules, Polymer, 42, 599-611, 2001
11. K.M. Kim, K. Adachi, Y. Chujo, Polymer hybrids of functionalized silsesquioxanes and organic polymers utilizing the sol-gel reaction of tetramethoxysilane, Polymer, 43, 1171-1175, 2002
12. L. Matejka, O. Dukh, J. Brus, W. Simonsick, B.J. Meissner, Cage-like structure formation during sol-gel polymerization of glycidyloxypropyltrimethoxysilane, Journal of Non-Crystalline Solids, 270, 34-47, 2000
13. Zeng L. et al., Sci.: Part A: Polym. Chem., 40, p885, 2002
14. A. Tsuchida, C. Bolln, F.G. Sernetz, H. Frey, R. Mulhaupt, Ethene and Propene Copolymers Containing Silsesquioxane Side Groups, Macromolecules, 30, 2818-2824, 1997
15. P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, J. D. Lichtenhan, Mechanical Relaxation and Microstructure of Poly(norborny1-POSS) Copolymers, Macromolecules, 32, 1194-1203, 1999
16. Zheng L., Richard J. F., Coughlin E. B., J. Polym. Sci.: Part A: Polym. Chem., 39, 2920, 2001
17. Laine E.R. et al., Organic/Inorganic Hybrid Materials; Materials Research Society; Warrendale, PA, 519, 1998
18. Haddad T. S. et al., Polym. Prepr. (Am. Chem. Soc. Polym. Div.), 40, p496, 1999
19. Jeffrey P., Krzysztof M., Macromolecules, 33, p217, 2000
20. Ricardo O. R., Wander L. V., Macromolecules, 34, p5398, 2001
21. Lichtenhan J.D., Otonari Y.A., Carr M.J., Macromolecules, 28, 8435, 1995
22. A. Lee, J. D. Lichtenhan, Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, Macromolecules, 31, 4970-4974, 1998
23. A. Romo-uribe, P.T. Mather, T.S. Haddad, J.D. Lichtenhan, Viscoelasic and Morphological Behavior of Hybrid Styry-Based Oligomeric Silsesquioxane(POSS) Copolymers, Journal of Polymer Scienece: Part B: Polymer Physics, 36 1857-1872, 1998
24. E. Jeoung, J.B. Carroll and V.M. Rotello, Surface modification via ‘lock and key’ specific self-assembly of polyhedral oligomeric silsequioxane(POSS) derivatives to modified gold surfaces, Chem Commun, 1510-1511, 2002
25. G.Z. Li, L. Wang, H. Toghiani, T.L. Daulton, C.U. Pittman Jr., Viscoelastic and mechanical properties of vinyl ester(VE)/multifunctional polyhedral oligomeric silsesquioxane(POSS) nanocomposites and mltifunectional POSS-styrene copolymers, Polymer, 43, 4167-4176, 2002
26. H. Xu, S.W. Kuo, F.C. Chang, Significant glass transition temperature increase based on polyhedral oligomeric silsequioxane(POSS) copolymer through hydrogen bonding, Polymer Bulletin, 48, 469-474, 2002
27. H. Xu, S.W. Kuo, J.S. Lee, F.C. Chang, Preparations, Thermal Properties, and Tg Increase Machanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 35, 8788-8793, 2002
28. B.S. Kim, P.T. Mather, Amphiphilic Telechelics Incorporating Polyhedral Oligosilsequioxane: 1. Synthesis and Characterization, Macromolecules, 35, 8378-8384, 2002.
29. W.Zhang, B.X.Fu, Y.Seo, E.Schrag, B.Hsiao, P.T.Mather, N.Yang, D.Xu, H.Ade, M.Rafailovich, J.Sokolov, Effect of Methyl Methacrylate/Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends, Macromolecules, 35, 8029-8038, 2002
30. L. Zheng., A.J. Waddon, R.J. Farris, E.B. Coughlin, X-ray characterizations of Polyethlene Polyhedral Oligomeric Silsesquioxane Copolymers, Macromolecules, 35, 2375-2379, 2002
31. K.M. Kim, D.K. Keum, Y.Chujo, Organic-Inorgnaic Polymer Hybrids Using Polyoxazoline Initiated by Functionalized Silsesquixane, Macromolecules, 36, 867-875, 2003
32. H. Xu, S.W. kuo, J.S. Lee, F.C. Chang, Glass trastion temperature of poly(hydrooxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsequioxanes), Polymer, 43, 5117-5124, 2002
33. N.Q. Vu, J.A. Carter, J.W. Gilman, F.J. Feher, J.D. Lichtenhan, Silsesquioxane-Siloxane Copolymers from Polyhedral Silsesquioxanes. Macromolecules, 26, 2141-2142, 1993.
34. J.D. Lichtenhan, Polyhedral Oligomeric Silsesquioxanes: Building Blocks for Silsesquioxane-Based Polymers and Hybrid Materials. Comments Inorg. Chem., 17, 115-130, 1995.
35. T.S. Haddad, J.D. Lichtenhan, The Incorporation of Transition Metals into Polyhedral Oligosilsesquioxane Polymers. J. Inorg. Organomet. Polym., 5, 237-246, 1995
36. J.D. Lichtenhan, Y.A. Otonari, M.J. Carr, Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers., Macromolecules, 28, 8435-8437, 1995
37. R.A. Mantz, P.F. Jones, K.P. Chaffee, J.D. Lichtenhan, J.W. Gilman, I.M. K.Ismail, M.J. Burmeister, Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers, Chem. Mater., 8, 1250-1259, 1996.
38. J.W. Gilman, D.S. Schlitzer and J.D. Lichtenhan, Low Earth Orbit Resistant Siloxane Copolymers, J. Appl. Polym. Sci., 60, 591-596, 1996.
39. J.D. Lichtenhan, C.J. Noel, A.G. Bolf and P.N. Ruth, Thermoplastic Hybrid Materials: Polyhedral Oligomeric Silsesquioxane (POSS) Reagents, Linear Polymers and Blends. Mat. Res. Soc. Symp. Proc., 435, 3-11, 1996
40. T.S. Haddad, E. Choe, J.D. Lichtenhan, Mat. Res. Soc. Symp. Proc., Hybrid Styryl-Based Polyhedral Oligomeric Silsesquioxane (POSS), Polymers, 435, 25-32, 1996.
41. P.T. Mather, H.R. Stuber, K.P. Chaffee, T.S. Haddad, A Novel Rheological Microscope for Flow Studies of Thermotropic Polymers and Polymer Blends: Droplet Deformation, A. Romo-Uribe and J. D. Lichtenhan, Mat. Res. Soc. Symp. Proc., 425, 137-142, 1996.
42. T.S. Haddad, J.D. Lichtenhan, Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules, 29, 7302-7304, 1996
43. J.J. Schwab, T.S. Haddad, J.D. Lichtenhan, P.T. Mather and K.P. Chaffee, Property Enhancements of Common Thermoplastics Via Incorporation of Silicon Based Monomers: Polyhedral Oligomeric Silsesquioxane Macromers and Polymers, Soc. Plast. Eng. Symp. Proc., 1814-1816, 1997
44. T.S. Haddad, J.J. Schwab, P.T. Mather, A. Romo-Uribe, Y. Otonari, M.J. Carr, J.D. Lichtenhan, The Rational Design of Silsesquioxane-Based Polymers, Soc. Plast. Eng. Symp. Proc., 1817-1820, 1997.
45. E.G. Shockey, A.G. Bolf, P.F. Jones, J.J. Schwab, K.P. Chaffee, T.S. Haddad, J.D. Lichtenhan, Functionalized Polyhedral Oligosilsesquioxane (POSS) Macromers: New Graftable POSS-Hydride, POSS-Alpha Olefin, POSS-Epoxy, and POSS-Chlorosilane Macromers and POSS-Siloxane Triblocks, Applied Organometallic Chemistry, accepted for publication, 1998
46. P.T. Mather, T.S. Haddad, J.D. Lichtenhan, Viscoelastic and Morpholgoical Behavior of Hybrid Styryl-Based Polyhedral Oligomeric Silsesquioxane (POSS) Copolymers. A. Romo-Uribe, Journal of Polymer Science; Polymer Physics, 35, accepted for publication, 1997
47. 李建裕,有機無機多面體矽氧烷寡聚物奈米複合材料究,交通大學應用化學研究所,民國91年6月
指導教授 徐新興(Shin-Shing Shyu) 審核日期 2003-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明