博碩士論文 90324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.189.195.35
姓名 唐弘寬(Hung-Kuan Tang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鑑定第四型與第九型雙胜肽蛋白水解酶之生物化學特性
(Biochemical Characterization of Dipeptidyl Peptidase IV (DPP-IV) and DPP9)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 脯胺酸雙胜肽蛋白水解酶 (prolyl dipeptidase) 家族,具有從胜肽上移除N端第二個脯胺酸殘基的功能。家族成員包括有第二型、第四型、第八型、第九型雙胜肽蛋白水解酶 [DPPII (E.C. 3.4.14.2)、DPP-IV (EC 3.4.14.5)、DPP8及DPP9] 及纖維母細胞激活蛋白(fibroblast activation protein,FAP)。其中第四型雙胜肽蛋白水解酶已有廣泛的研究。然而,其餘的家族成員之生物功能至今仍尚未被解析。其中,第八型及第九型雙胜肽蛋白水解酶在其胺基酸序列有58%相同。
首先,本論文著重於鑑定第九型雙胜肽蛋白水解酶的生物化學特性,包括其酵素活性、四級結構、受質特性選擇 (substrate profile) 及酸鹼值最適範圍。第九型雙胜肽蛋白水解酶的表現是利用昆蟲細胞表現系統,在Strep‧TactinTM的純化系統中純化。在此表現系統中,我們所得到的產率相較於文獻中所發表的數值,有約100倍的提升。生物化學鑑定的結果顯示,第九型雙胜肽蛋白水解酶在其酵素活性、受質特性選擇和酸鹼值最適範圍,皆類似於第八型雙胜肽蛋白水解酶。且其四級結構皆為雙聚體 (homodimer)。第九型雙胜肽蛋白水解酶位於雙聚體組合的接合面 (dimer interface) 之定點突變株 (F842A),經表現純化後,發現其四級結構亦為二聚體,但其酵素活性相較於野生型減低了約300倍。根據我們實驗室先前的研究成果,這結果顯示出第九型雙胜肽蛋白水解酶的二聚化(dimerization) 的形式是近似於第八型雙胜肽蛋白水解酶。因此,第八型及第九型雙胜肽蛋白水解酶的生物化學特性是相當類似。我們推論第八型及第九型雙胜肽蛋白水解酶在生物體內可能扮演著同樣的角色。
另外,在纖維母細胞、表皮細胞及血球細胞中,我們發現第八型及第九型雙胜肽蛋白水解酶皆有表現,且相互之間的表現量並無顯著差異。而且,和文獻中的所發表的不同的地方在於,我們的研究發現第八型與第九型雙胜肽蛋白水解酶的表現,在T細胞活化前與活化後,其表現量沒有顯著的差異。
第四型雙胜肽蛋白水解酶為第二型糖尿病之藥物標的(drug target)。文獻中指出,藥物在抑制第四型雙胜肽蛋白水解酶時,若有第八型及第九型雙胜肽蛋白水解酶的酵素活性同時被抑制,會有動物體內毒性的問題。然而,目前並無確切的證據,指示出第八型及第九型雙胜肽蛋白水解酶的抑制為導致動物體內毒性的原因。我們利用對第八型及第九型雙胜肽蛋白水解酶具有高度選擇性的抑制劑 (名為1G244),於大鼠 (Sprague-Dawley rat) 內進行實驗。結果顯示,1G244的Ki值對於第八型雙胜肽蛋白水解酶,相較於文獻中所使用的結抗劑 (DPP8/9 selective),其值小了15倍;而對於第九型雙胜肽蛋白水解酶,1G244的Ki值相較於DPP8/9 selective小了8倍。顯示出1G244較DPP8/9 selective有更強的抑制效果。另外,我們的結果發現,1G244很快的被細胞所吸收。相對的,DPP8/9 selective幾乎無法進入細胞。在動物實驗中,實驗結果指出1G244在大鼠以靜脈注射的方式給藥14天,經檢測血液學及血清學的參數後,僅發現輕微的副作用。綜合以上結果,顯示出第八型及第九型雙胜肽蛋白水解酶的抑制,對動物並不會產生嚴重的毒性。而先前文獻中的結果,可能是由於所謂的”off-target”的現象。因為所使用的結抗劑 (DPP8/9 selective) 無法進入細胞,進而達到抑制第八型及第九型雙胜肽蛋白水解酶。而其所觀察到的毒性反應,很可能是因為抑制了其它未知的酵素或蛋白質所導致。
最後,我們研究propeller環,對第四型與第九型雙胜肽蛋白水解酶的活性及結構上所扮演的角色。Propeller環為propeller功能性區塊上所延伸出來的小片段,座落在雙聚體組合的接合面 (dimer interface) 上。對脯胺酸雙胜肽水解酶而言,propeller環所扮演的角色至今仍未明瞭。由於第九型雙胜肽蛋白水解酶的結構至今仍未被解析,我們根據其胺基酸序列和其它脯胺酸雙胜肽水解酶的序列排比,以及文獻中與第八型雙胜肽水解酶的電腦模擬,推估其propeller環的位置。我們針對酵素演化保留殘基 (conserved residue) 做四個定點突變,包括V319A、E325A、K328A及Y334A,以及將propeller環去除的突變 (DEL)。經由表現及純化後,結果發現在V319A、E325A及K328A的突變株中,酵素活性及雙聚體的四級結構皆和野生型的第九型雙胜肽水解酶相似。相對的,Y334A及DEL的突變株中,其酵素活性相較於野生型有所減低 (動力學常數kcat值下降,Km值上升)。
而對第四型雙胜肽水解酶,propeller環相較於第九型雙胜肽水解酶,對其酵素活性及四級結構有不同的影響。根據解析出的結構,我們將propeller環分為兩個部份探討:intermolecular及intramolecular interaction,其中Y248為intermolecular interaction,而Y238及Y256為intramolecular interaction。在intermolecular interaction方面,我們將Y248做三個定點突變,包含Y248F、Y248T及Y248A,以及將propeller環去除的突變 (Del)。結果顯示出Y248上的phenyl group對雙聚體的形成相當重要。在沒有phenyl group的突變株中,包括Y248T、Y248A及Del,四級結構皆為單聚體而非雙聚體,且活性相較於雙聚體有下降的情形,或無法測得。其中Y248A及Del的單聚體其活性無法測得,而Y248T的雙聚體其動力學常數kcat值下降,Km值不變。不同的Km值影響效應,顯示出hydroxyl group可能對第四型雙胜肽蛋白水解酶與受質的黏合,扮演重要的角色。在intramolecular interaction方面,Y238A及Y256A的突變株同時有雙聚體及單聚體產生。值得一提的是,其單聚體的酵素活性和雙聚體相似。此一結果和我們先前所發表的結果不同。先前的研究中皆指出單聚體的第四型雙胜肽蛋白水解酶,酵素活性相較於雙聚體,都有下降的情形。未來,我們會針對有活性的單聚體,深入的了解其機轉。總而言之,我們的結果顯示出propeller環,對第四型及第九型雙胜肽蛋白水解酶的結構及酵素活性有著不同的影響。了解propeller環對脯胺酸雙胜肽蛋白水解酶家族的結構及酵素活性的影響,將會幫助了解脯胺酸雙胜肽蛋白水解酶在biogenesis及雙聚體的形成。
摘要(英) The family of prolyl dipeptidases has attracted extensive investigation in recent years because of their unique ability to cleave the peptide bond after a penultimate proline residue. It includes dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5), FAP (fibroblast activation protein), DPP2 (E.C. 3.4.14.2), DPP8 and DPP9. DPP-IV is the most extensively studied, and the functions for other members are not known so far. DPP9 and DPP8 are highly homologous proteases with 58% sequence identity at the amino acid level. Both the structure and function of these two proteases are not known.
In this thesis, we first characterized the biochemical property of DPP9 including its enzymatic activity, quaternary structure, substrate specificity and pH optimum. DPP9 was expressed and purified from the baculovirus-infected insect cells using Strep‧TactinTM purification system. The yield is significantly higher than what was reported in the literature. DPP9 has similar enzymatic activity, substrate specificity and pH optimum as DPP8. Both of them are homodimeric. Single site mutation at the C-terminal loop (F842A), one of the dimer interfaces, results in dimeric DPP9 with little enzymatic activity. The results indicate that the interaction mode of dimerization is similar to that of DPP8, reported previously from our lab. Therefore, the biochemical property of DPP9 we discovered so far is almost identical to that of DPP8. We speculate that DPP9 and DPP8 carry out overlapping functions in vivo.
We have also determined the expression profile of DPP9. DPP9 is ubiquitously expressed in different cell types including fibroblasts, epithelial and blood cells. Surprisingly, contrary to previous report, we found that the expression levels of DPP8 and DPP9 do not change upon the activation of T-cells such as PBMC and Jurkat cells. Because DPP8 and DPP9 are ubiquitously expressed, whether they involve in immunological function as speculated awaits further studies. The characterization of DPP9 reported here lays the foundation for revealing its function in the future
DPP-IV is a validated drug target for human type II diabetes. DPP-IV inhibitors without DPP8/9 inhibitory activity have been sought because a possible association was reported between a “DPP8/9 inhibitor” and severe toxicity in animals. However, at present, it is not known whether the observed toxicity is associated with DPP8/9 inhibition, or an off-target effect induced by the compound. We investigated whether the inhibition of DPP8/9 is the cause of the severe toxicity in animals using a very potent and selective DPP8/9 inhibitor with different pharmacophore, 1G244. By Ki measurement, 1G244 is 15- and 8-fold more potent against DPP8 and DPP9, respectively, than the “DPP8/9 inhibitor”. Strikingly, the “DPP8/9 inhibitor” does not penetrate the plasma membrane but remains outside the cells, whereas 1G244 readily enters the cells, even at low doses. By repeatedly exposing Strague-Dawley rats to 1G244 by intravenous injection for a period of 14 days, we observed no significant toxicological symptoms associated with 1G244. Blood and serum chemistry parameters were all within the normal ranges for the treated animals. Because of the high potency, good membrane penetration and adequate tissue distribution of 1G244, the mild symptoms observed are probably associated with DPP8/9 inhibition. Our results demonstrate that there is no direct causal effect of DPP8/9 inhibition with toxicity in animals.
Finally, we have examined the contribution of the propeller loop to the enzymatic activity and quaternary structure of DPP9 and DPP-IV. The propeller loop is one of the two dimer interfaces and its function for the structure and activity of prolyl dipeptidase family is not known. Because the crystal structure of DPP9 has not been resolved, we have identified the sequence corresponding to the propeller loop of DPP9 based on the sequence alignment with other members of prolyl dipeptidases, and computer modeling of DPP8 reported in the literature. The conserved residues or the corresponding residues whose mutations have drastic effects on DPP-IV structure and activity were chosen to be mutated. The mutant proteins were expressed and purified from insect cells. For DPP9, five mutations located on the propeller loop were generated, which include a complete deletion of the propeller loop (DEL), V319A, E325A, K328A and Y334A. Among them, the dimeric structure and enzymatic activity of V319A, E325A and K328A mutant proteins were similar to those of wild type DPP9. In contrast, Y334A and DEL fail to disrupt DPP9 dimers to monomers. However, the mutant dimers are inactive with kcat significantly decreased and Km increased.
Interestingly, differential effects on the structure and activity of DPP-IV were discovered with mutations on the propeller loop. Based on the crystal structure of DPP-IV, we have identified two groups of residues on the propeller loop that are involved in inter-molecular and intra-molecular interactions, Y248 involved in intermolecular interaction, and Y238 and Y256 involved in intramolecular interaction. We have introduced single site mutation to these residues resulting in Y248F, Y248A, Y248T, Y238A and Y256A, respectively. We also generated a deletion mutation, called Del, by deleting the whole propeller loop. We demonstrated that phenyl group of Y248 is essential for dimer formation. Lack of phenyl group, such as Y248T, Y248A and Del, results in monomeric DPP-IVs with very low or no activities. Specifically, Y248A and deletion mutants result in monomers with no activity detectable, while monomeric Y248T has a low kcat and an unchanged Km. Difference on Km effects suggests that the hydroxyl group might be important for the integrity of the substrate binding pocket. Y238A and Y256A mutations result in a mixture of monomers and dimers. Intriguingly, the monomers of Y238A and Y256A were fully active as the dimers. This is drastically different from all the monomeric mutations we generated previously. Further work will be required to fully understand the underlying mechanism of these active monomeric DPP-IVs. In summary, our results demonstrate that the propeller loop exerts differential effect on the structure and activity of DPP-IV and DPP9. Understanding how propeller loop affects the structure and activity of prolyl dipeptidases will help the understanding of the biogenesis and folding of homomeric proteins in the future.
關鍵字(中) ★ 第四型雙胜肽蛋白水解酶
★ 生物化學
★ 第二型糖尿病
★ 脯胺酸雙胜肽蛋白水解酶
★ 蛋白質結構
關鍵字(英) ★ DPP-IV
★ DPP8
★ DPP9
★ protein structure
★ type II diabetes
★ toxicology
論文目次 Table of Contents
Chinese abstract i
English abstract iv
Acknowledgements vii
List of Tables xiii
List of Figures xiv
Chapter 1 Background 1
1-1 Introduction to DPP-IV activity and/or structure homolog (DASH) protein family 1
1-2 DPP-IV (E.C. 3.4.14.5) 1
1-2-1 DPP-IV structure 2
1-2-2 DPP-IV substrates 3
1-2-3 Adenosine deaminase as a ligand of cell surface DPP-IV 7
1-2-4 DPP-IV function 8
1-2-5 Soluble DPP-IV 12
1-3 FAP (fibroblast activation protein) 12
1-4 DPPII (QPP and DPP7) (E.C. 3.4.14.2) 14
1-5 DPP8 15
1-6 DPP9 16
1-7 The role of DPP-IV in type II diabetes mellitus (T2DM) 17
1-8 Structural factors for activity and quaternary structure of DASH enzymes 18
1-9 Purposes of this thesis 20
Chapter 2 Biochemical Properties and Expression Profile of Human DPP9 32
2-1 Introduction 32
2-2 Materials and Methods 33
2-2-1Cell Culture 33
2-2-2 Construction of DPP9 expression plasmid 33
2-2-3 Expression and Purification of DPP9 protein in baculovirus-infected insect cells 34
2-2-4 Determination of kinetic constants, substrate specificities and pH optimum of DPP9 35
2-2-5 Determination of N-glycosylation on DPP9 36
2-2-6 Modeling DPP9 structure by electron microscopy with negative staining method 36
2-2-7 Quantitative RT-PCR (qPCR) 37
2-2-8 Stimulation of Jurkat and PBMC cells with phytohaemaglutinin (PHA) 37
2-2-9 Flow cytometry analysis 38
2-2-10 Data analysis 38
2-3 Results 39
2-3-1 A new expression system for DPP9 in Sf9 insect cells 39
2-3-2 DPP9 structure 40
2-3-3 Substrate specificity and pH optimum of DPP9 40
2-3-4 Single site mutation in the C-terminal loop inactivates DPP9 41
2-3-5 Expression Profile of DPP9 42
2-4 Discussion 44
Chapter 3 Biochemical Characterizaiton of the DPP8/9 inhibitor 62
3-1 Introduction 62
3-2 Materials and Methods 64
3-2-1 Expression and purification of human recombinant DPP-IV, DPP8, DPP9, DPP2 and FAP proteins 64
3-2-2 IC50 determination 66
3-2-3 Inhibition constant (Ki) measurement 67
3-2-4 Mammalian cell culture and inhibitor uptake 68
3-2-5 Pharmacokinetic analysis of 1G244 in Sprague Dawley rats 69
3-2-6 Rat toxicity studies 70
3-2-7 Data analysis 71
3-3 Results 72
3-3-1 Biochemical properties of 1G244 72
3-3-2 Pharmacokinetic properties of 1G244 74
3-3-3 Two-week toxicity studies of 1G244 in SD rats 75
3-4 Discussion 77
Chapter 4 The Propeller Loop for the Structure and Activity of DPP-IV and DPP9 96
4-1 Introduction 96
4-2 Materials and Methods 98
4-2-1 Plasmid Construction 98
4-2-2 Determination of Kinetic Constants 98
4-2-3 Analytical Ultracentrifugation (AUC) and Surface Plasma Resonance (SPR) 98
4-4-6 Circular Dichroism (CD) 100
4-3 Results 101
4-3-1 Contribution of propeller interface to quaternary and enzymatic activity to DPP-IV 101
4-3-2 Contribution of propeller interface to quaternary structure and enzymatic activity to DPP9 107
4-3-3 Thermostability of DPP-IV and DPP9 mutant proteins 109
DPP-IV 109
4-3-4 Interaction of DPP-IV mutant proteins with ADA 110
4-4 Discussion 111
Bibliography 134
參考文獻 [1] Rosenblum JS, Kozarich JW. Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 2003;7:496-504.
[2] Yaron A, Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 1993;28:31-81.
[3] Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol 2008;29:295-301.
[4] Chen T, Ajami K, McCaughan GW, Gorrell MD, Abbott CA. Dipeptidyl peptidase IV gene family. The DPIV family. Adv Exp Med Biol 2003;524:79-86.
[5] Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003;40:209-94.
[6] Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966;7:197-201.
[7] Tanaka T, Camerini D, Seed B, Torimoto Y, Dang NH, Kameoka J, et al. Cloning and functional expression of the T cell activation antigen CD26. J Immunol 1992;149:481-6.
[8] Fleischer B. CD26: a surface protease involved in T-cell activation. Immunol Today 1994;15:180-4.
[9] Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A, et al. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 2000;267:5608-13.
[10] Kikuchi M, Fukuyama K, Epstein WL. Soluble dipeptidyl peptidase IV from terminal differentiated rat epidermal cells: purification and its activity on synthetic and natural peptides. Arch Biochem Biophys 1988;266:369-76.
[11] Lambeir AM, Diaz Pereira JF, Chacon P, Vermeulen G, Heremans K, Devreese B, et al. A prediction of DPP IV/CD26 domain structure from a physico-chemical investigation of dipeptidyl peptidase IV (CD26) from human seminal plasma. Biochim Biophys Acta 1997;1340:215-26.
[12] Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond) 2005;108:277-92.
[13] Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 2001;54:249-64.
[14] McCaughan GW, Gorrell MD, Bishop GA, Abbott CA, Shackel NA, McGuinness PH, et al. Molecular pathogenesis of liver disease: an approach to hepatic inflammation, cirrhosis and liver transplant tolerance. Immunol Rev 2000;174:172-91.
[15] Rasmussen HB, Branner S, Wiberg FC, Wagtmann N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 2003;10:19-25.
[16] Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A 2003;100:5063-8.
[17] Thoma R, Loffler B, Stihle M, Huber W, Ruf A, Hennig M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 2003;11:947-59.
[18] Leiting B, Pryor KD, Wu JK, Marsilio F, Patel RA, Craik CS, et al. Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII. Biochem J 2003;371:525-32.
[19] Lee HJ, Chen YS, Chou CY, Chien CH, Lin CH, Chang GG, et al. Investigation of the dimer interface and substrate specificity of prolyl dipeptidase DPP8. J Biol Chem 2006;281:38653-62.
[20] Bongers J, Lambros T, Ahmad M, Heimer EP. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim Biophys Acta 1992;1122:147-53.
[21] Hinke SA, Pospisilik JA, Demuth HU, Mannhart S, Kuhn-Wache K, Hoffmann T, et al. Dipeptidyl peptidase IV (DPIV/CD26) degradation of glucagon. Characterization of glucagon degradation products and DPIV-resistant analogs. J Biol Chem 2000;275:3827-34.
[22] Lambeir AM, Durinx C, Proost P, Van Damme J, Scharpe S, De Meester I. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett 2001;507:327-30.
[23] Martin RA, Cleary DL, Guido DM, Zurcher-Neely HA, Kubiak TM. Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser, Thr or Val. Extended DPP-IV substrate specificity? Biochim Biophys Acta 1993;1164:252-60.
[24] Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 2001;276:29839-45.
[25] Pospisilik JA, Hinke SA, Pederson RA, Hoffmann T, Rosche F, Schlenzig D, et al. Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul Pept 2001;96:133-41.
[26] Rahfeld J, Schutkowski M, Faust J, Neubert K, Barth A, Heins J. Extended investigation of the substrate specificity of dipeptidyl peptidase IV from pig kidney. Biol Chem Hoppe Seyler 1991;372:313-8.
[27] Wolf B, Fischer G, Barth A. [Kinetics of dipeptidyl-peptidase IV]. Acta Biol Med Ger 1978;37:409-20.
[28] de Meester I, Lambeir AM, Proost P, Scharpe S. Dipeptidyl peptidase IV substrates. An update on in vitro peptide hydrolysis by human DPP-IV. Adv Exp Med Biol 2003;524:3-17.
[29] Oya H, Harada M, Nagatsu T. Peptidase activity of glycylprolyl beta-naphthylamidase from human submaxillary gland. Arch Oral Biol 1974;19:489-91.
[30] Puschel G, Mentlein R, Heymann E. Isolation and characterization of dipeptidyl peptidase IV from human placenta. Eur J Biochem 1982;126:359-65.
[31] Hoffmann T, Reinhold D, Kahne T, Faust J, Neubert K, Frank R, et al. Inhibition of dipeptidyl peptidase IV (DP IV) by anti-DP IV antibodies and non-substrate X-X-Pro- oligopeptides ascertained by capillary electrophoresis. J Chromatogr A 1995;716:355-62.
[32] Bermpohl F, Loster K, Reutter W, Baum O. Rat dipeptidyl peptidase IV (DPP IV) exhibits endopeptidase activity with specificity for denatured fibrillar collagens. FEBS Lett 1998;428:152-6.
[33] Kenny AJ, Booth AG, George SG, Ingram J, Kershaw D, Wood EJ, et al. Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem J 1976;157:169-82.
[34] Fischer G, Heins J, Barth A. The conformation around the peptide bond between the P1- and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim Biophys Acta 1983;742:452-62.
[35] Mentlein R. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. Regul Pept 1999;85:9-24.
[36] Cox HM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 2007;133:76-85.
[37] Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998;50:143-50.
[38] Medeiros MD, Turner AJ. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 1994;134:2088-94.
[39] Mentlein R, Dahms P, Grandt D, Kruger R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993;49:133-44.
[40] Grandt D, Teyssen S, Schimiczek M, Reeve JR, Jr., Feth F, Rascher W, et al. Novel generation of hormone receptor specificity by amino terminal processing of peptide YY. Biochem Biophys Res Commun 1992;186:1299-306.
[41] Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, Rone J, Movafagh S, Ji H, et al. Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circ Res 1998;83:187-95.
[42] Wahlestedt C, Grundemar L, Hakanson R, Heilig M, Shen GH, Zukowska-Grojec Z, et al. Neuropeptide Y receptor subtypes, Y1 and Y2. Ann N Y Acad Sci 1990;611:7-26.
[43] Lundberg JM, Tatemoto K, Terenius L, Hellstrom PM, Mutt V, Hokfelt T, et al. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci U S A 1982;79:4471-5.
[44] Ballantyne GH. Peptide YY(1-36) and peptide YY(3-36): Part II. Changes after gastrointestinal surgery and bariatric surgery. Obes Surg 2006;16:795-803.
[45] Ballantyne GH. Peptide YY(1-36) and peptide YY(3-36): Part I. Distribution, release and actions. Obes Surg 2006;16:651-8.
[46] Ahren B. Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci 2008;1144:28-35.
[47] Filipsson K, Kvist-Reimer M, Ahren B. The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes 2001;50:1959-69.
[48] Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J Biol Chem 2003;278:22418-23.
[49] Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000;21:619-70.
[50] Brown JC, Dahl M, Kwauk S, McIntosh CH, Otte SC, Pederson RA. Actions of GIP. Peptides 1981;2 Suppl 2:241-5.
[51] Drucker DJ, Shi Q, Crivici A, Sumner-Smith M, Tavares W, Hill M, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol 1997;15:673-7.
[52] Frohman LA, Jansson JO. Growth hormone-releasing hormone. Endocr Rev 1986;7:223-53.
[53] Gefel D, Hendrick GK, Mojsov S, Habener J, Weir GC. Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology 1990;126:2164-8.
[54] Knudsen LB, Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996;318:429-35.
[55] Lin MC, Wright DE, Hruby VJ, Rodbell M. Structure-function relationships in glucagon: properties of highly purified des-His-1-, monoiodo-, and (des-Asn-28, Thr-29)(homoserine lactone-27)-glucagon. Biochemistry 1975;14:1559-63.
[56] Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, et al. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 2000;275:24003-12.
[57] Robberecht P, Gourlet P, De Neef P, Woussen-Colle MC, Vandermeers-Piret MC, Vandermeers A, et al. Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J Biochem 1992;207:239-46.
[58] Filipsson K, Tornoe K, Holst J, Ahren B. Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab 1997;82:3093-8.
[59] Bosi E, Lucotti P, Setola E, Monti L, Piatti PM. Incretin-based therapies in type 2 diabetes: a review of clinical results. Diabetes Res Clin Pract 2008;82 Suppl 2:S102-7.
[60] Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009;5:262-9.
[61] Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 2009;297:127-36.
[62] Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002;54:227-9.
[63] Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121-7.
[64] Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996;272:1955-8.
[65] Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996;272:872-7.
[66] Jin T, Xu X, Hereld D. Chemotaxis, chemokine receptors and human disease. Cytokine 2008;44:1-8.
[67] Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001;2:123-8.
[68] Baggiolini M. Chemokines and leukocyte traffic. Nature 1998;392:565-8.
[69] De Meester I, Durinx C, Bal G, Proost P, Struyf S, Goossens F, et al. Natural substrates of dipeptidyl peptidase IV. Adv Exp Med Biol 2000;477:67-87.
[70] Oravecz T, Pall M, Roderiquez G, Gorrell MD, Ditto M, Nguyen NY, et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med 1997;186:1865-72.
[71] Proost P, De Meester I, Schols D, Struyf S, Lambeir AM, Wuyts A, et al. Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection. J Biol Chem 1998;273:7222-7.
[72] Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 2000;96:1674-80.
[73] Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts JP, et al. Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 1998;432:73-6.
[74] Proost P, Struyf S, Schols D, Opdenakker G, Sozzani S, Allavena P, et al. Truncation of macrophage-derived chemokine by CD26/ dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem 1999;274:3988-93.
[75] Shioda T, Kato H, Ohnishi Y, Tashiro K, Ikegawa M, Nakayama EE, et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci U S A 1998;95:6331-6.
[76] Van Coillie E, Proost P, Van Aelst I, Struyf S, Polfliet M, De Meester I, et al. Functional comparison of two human monocyte chemotactic protein-2 isoforms, role of the amino-terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV. Biochemistry 1998;37:12672-80.
[77] Endres MJ, Clapham PR, Marsh M, Ahuja M, Turner JD, McKnight A, et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 1996;87:745-56.
[78] Andy RJ, Kornfeld R. The adenosine deaminase binding protein of human skin fibroblasts is located on the cell surface. J Biol Chem 1982;257:7922-5.
[79] Aran JM, Colomer D, Matutes E, Vives-Corrons JL, Franco R. Presence of adenosine deaminase on the surface of mononuclear blood cells: immunochemical localization using light and electron microscopy. J Histochem Cytochem 1991;39:1001-8.
[80] Schrader WP, Miczek AD, West CA, Samsonoff WA. Evidence for receptor-mediated uptake of adenosine deaminase in rabbit kidney. J Histochem Cytochem 1988;36:1481-7.
[81] Daddona PE, Kelley WN. Human adenosine deaminase binding protein. Assay, purification, and properties. J Biol Chem 1978;253:4617-23.
[82] Van der Weyden MB, Kelley WN. Adenosine deaminase and immune function. Br J Haematol 1976;34:159-65.
[83] Hovi T, Smyth JF, Allison AC, Williams SC. Role of adenosine deaminase in lymphocyte proliferation. Clin Exp Immunol 1976;23:395-403.
[84] Carson DA, Seegmiller JE. Effect of adenosine deaminase inhibition upon human lymphocyte blastogenesis. J Clin Invest 1976;57:274-82.
[85] Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, et al. Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 1997;52:283-94.
[86] Hirschhorn R. Adenosine deaminase deficiency. Immunodefic Rev 1990;2:175-98.
[87] Hirschhorn R. Overview of biochemical abnormalities and molecular genetics of adenosine deaminase deficiency. Pediatr Res 1993;33:S35-41.
[88] Dong RP, Kameoka J, Hegen M, Tanaka T, Xu Y, Schlossman SF, et al. Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J Immunol 1996;156:1349-55.
[89] Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 1998;161:27-42.
[90] Martin M, Huguet J, Centelles JJ, Franco R. Expression of ecto-adenosine deaminase and CD26 in human T cells triggered by the TCR-CD3 complex. Possible role of adenosine deaminase as costimulatory molecule. J Immunol 1995;155:4630-43.
[91] Schrader WP, West CA, Miczek AD, Norton EK. Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J Biol Chem 1990;265:19312-8.
[92] Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993;261:466-9.
[93] De Meester I, Vanham G, Kestens L, Vanhoof G, Bosmans E, Gigase P, et al. Binding of adenosine deaminase to the lymphocyte surface via CD26. Eur J Immunol 1994;24:566-70.
[94] Kahne T, Lendeckel U, Wrenger S, Neubert K, Ansorge S, Reinhold D. Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int J Mol Med 1999;4:3-15.
[95] Ruers TJ, Buurman WA, van der Linden CJ. 2'Deoxycoformycin and deoxyadenosine affect IL 2 production and IL 2 receptor expression of human T cells. J Immunol 1987;138:116-22.
[96] Dong RP, Tachibana K, Hegen M, Munakata Y, Cho D, Schlossman SF, et al. Determination of adenosine deaminase binding domain on CD26 and its immunoregulatory effect on T cell activation. J Immunol 1997;159:6070-6.
[97] Weihofen WA, Liu J, Reutter W, Saenger W, Fan H. Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J Biol Chem 2004;279:43330-5.
[98] Richard E, Alam SM, Arredondo-Vega FX, Patel DD, Hershfield MS. Clustered charged amino acids of human adenosine deaminase comprise a functional epitope for binding the adenosine deaminase complexing protein CD26/dipeptidyl peptidase IV. J Biol Chem 2002;277:19720-6.
[99] Richard E, Arredondo-Vega FX, Santisteban I, Kelly SJ, Patel DD, Hershfield MS. The binding site of human adenosine deaminase for CD26/Dipeptidyl peptidase IV: the Arg142Gln mutation impairs binding to cd26 but does not cause immune deficiency. J Exp Med 2000;192:1223-36.
[100] Harland C, Shah T, Webster AD, Peters TJ. Dipeptidyl peptidase IV--subcellular localization, activity and kinetics in lymphocytes from control subjects, immunodeficient patients and cord blood. Clin Exp Immunol 1988;74:201-5.
[101] Sedo A, Krepela E, Kasafirek E. A kinetic fluorometric assay of dipeptidyl peptidase IV in viable human blood mononuclear cells. Biochimie 1989;71:757-61.
[102] Lojda Z. Studies on glycyl-proline naphthylamidase. I. Lymphocytes. Histochemistry 1977;54:299-309.
[103] Dang NH, Torimoto Y, Sugita K, Daley JF, Schow P, Prado C, et al. Cell surface modulation of CD26 by anti-1F7 monoclonal antibody. Analysis of surface expression and human T cell activation. J Immunol 1990;145:3963-71.
[104] Morimoto C, Torimoto Y, Levinson G, Rudd CE, Schrieber M, Dang NH, et al. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol 1989;143:3430-9.
[105] Fox DA, Hussey RE, Fitzgerald KA, Acuto O, Poole C, Palley L, et al. Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody. J Immunol 1984;133:1250-6.
[106] Hegen M, Niedobitek G, Klein CE, Stein H, Fleischer B. The T cell triggering molecule Tp103 is associated with dipeptidyl aminopeptidase IV activity. J Immunol 1990;144:2908-14.
[107] Tanaka T, Kameoka J, Yaron A, Schlossman SF, Morimoto C. The costimulatory activity of the CD26 antigen requires dipeptidyl peptidase IV enzymatic activity. Proc Natl Acad Sci U S A 1993;90:4586-90.
[108] Munoz E, Blazquez MV, Madueno JA, Rubio G, Pena J. CD26 induces T-cell proliferation by tyrosine protein phosphorylation. Immunology 1992;77:43-50.
[109] Hafler DA, Chofflon M, Benjamin D, Dang NH, Breitmeyer J. Mechanisms of immune memory. T cell activation and CD3 phosphorylation correlates with Ta1 (CDw26) expression. J Immunol 1989;142:2590-6.
[110] Reinhold D, Bank U, Buhling F, Lendeckel U, Faust J, Neubert K, et al. Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor-beta 1 in PWM-stimulated PBMC and T cells. Immunology 1997;91:354-60.
[111] Reinhold D, Kahne T, Tager M, Lendeckel U, Buhling F, Bank U, et al. The effect of anti-CD26 antibodies on DNA synthesis and cytokine production (IL-2, IL-10 and IFN-gamma) depends on enzymatic activity of DP IV/CD26. Adv Exp Med Biol 1997;421:149-55.
[112] Willheim M, Ebner C, Baier K, Kern W, Schrattbauer K, Thien R, et al. Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T(H1) subsets. J Allergy Clin Immunol 1997;100:348-55.
[113] Dang NH, Hafler DA, Schlossman SF, Breitmeyer JB. FcR-mediated crosslinking of Ta1 (CDw26) induces human T lymphocyte activation. Cell Immunol 1990;125:42-57.
[114] Brezinschek RI, Lipsky PE, Galea P, Vita R, Oppenheimer-Marks N. Phenotypic characterization of CD4+ T cells that exhibit a transendothelial migratory capacity. J Immunol 1995;154:3062-77.
[115] Mizokami A, Eguchi K, Kawakami A, Ida H, Kawabe Y, Tsukada T, et al. Increased population of high fluorescence 1F7 (CD26) antigen on T cells in synovial fluid of patients with rheumatoid arthritis. J Rheumatol 1996;23:2022-6.
[116] Thompson MA, Ohnuma K, Abe M, Morimoto C, Dang NH. CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders. Mini Rev Med Chem 2007;7:253-73.
[117] Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci 2008;13:1634-45.
[118] Savino W, Villa-Verde DM, Lannes-Vieira J. Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol Today 1993;14:158-61.
[119] Cheng HC, Abdel-Ghany M, Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem 2003;278:24600-7.
[120] Abdel-Ghany M, Cheng H, Levine RA, Pauli BU. Truncated dipeptidyl peptidase IV is a potent anti-adhesion and anti-metastasis peptide for rat breast cancer cells. Invasion Metastasis 1998;18:35-43.
[121] Kikkawa F, Kajiyama H, Ino K, Shibata K, Mizutani S. Increased adhesion potency of ovarian carcinoma cells to mesothelial cells by overexpression of dipeptidyl peptidase IV. Int J Cancer 2003;105:779-83.
[122] Kikkawa F, Kajiyama H, Shibata K, Ino K, Nomura S, Mizutani S. Dipeptidyl peptidase IV in tumor progression. Biochim Biophys Acta 2005;1751:45-51.
[123] Dang NH, Morimoto C. CD26: an expanding role in immune regulation and cancer. Histol Histopathol 2002;17:1213-26.
[124] Dang NH, Aytac U, Sato K, O'Brien S, Melenhorst J, Morimoto C, et al. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol 2003;121:857-65.
[125] Aribi A, Keating, M., O'Brien, S.,Ferrajoli, A., Faderl, S., Lerner, S., Koller, C., Wierda, W., Cortes, J., Kantarjian, H., Ravandi-Kashani, F. Long-Term Follow-Up of Patients with T-Large Granular Lymphocyte Leukemia (T-LGL); Experience in a Single Institution. Blood 2005;106:Abstract#5026.
[126] Jones D, Dang NH, Duvic M, Washington LT, Huh YO. Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol 2001;115:885-92.
[127] Fujita K, Hirano M, Ochiai J, Funabashi M, Nagatsu I, Nagatsu T, et al. Serum glycylproline p-nitroanilidase activity in rheumatoid arthritis and systemic lupus erythematosus. Clin Chim Acta 1978;88:15-20.
[128] Hino M, Nagatsu T, Kakumu S, Okuyama S, Yoshii Y, Nagatsu I. Glycylprolyl beta-naphthylamidase activity in human serum. Clin Chim Acta 1975;62:5-11.
[129] Iwaki-Egawa S, Watanabe Y, Kikuya Y, Fujimoto Y. Dipeptidyl peptidase IV from human serum: purification, characterization, and N-terminal amino acid sequence. J Biochem (Tokyo) 1998;124:428-33.
[130] Shibuya-Saruta H, Kasahara Y, Hashimoto Y. Human serum dipeptidyl peptidase IV (DPP-IV) and its unique properties. J Clin Lab Anal 1996;10:435-40.
[131] Fukasawa K, Harada M, Komatsu M, Yamaoka M, Urade M, Shirasuna K, et al. Serum dipeptidyl peptidase (DPP) IV activities in oral cancer patients. Int J Oral Surg 1982;11:246-50.
[132] Duke-Cohan JS, Morimoto C, Rocker JA, Schlossman SF. A novel form of dipeptidylpeptidase IV found in human serum. Isolation, characterization, and comparison with T lymphocyte membrane dipeptidylpeptidase IV (CD26). J Biol Chem 1995;270:14107-14.
[133] de Meester I, Vanhoof G, Lambeir AM, Scharpe S. Use of immobilized adenosine deaminase (EC 3.5.4.4) for the rapid purification of native human CD26/dipeptidyl peptidase IV (EC 3.4.14.5). J Immunol Methods 1996;189:99-105.
[134] Wilson MJ, Ruhland AR, Pryor JL, Ercole C, Sinha AA, Hensleigh H, et al. Prostate specific origin of dipeptidylpeptidase IV (CD-26) in human seminal plasma. J Urol 1998;160:1905-9.
[135] Boonacker E, Van Noorden CJ. The multifunctional or moonlighting protein CD26/DPP-IV. Eur J Cell Biol 2003;82:53-73.
[136] Lee KN, Jackson KW, Christiansen VJ, Chung KH, McKee PA. A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 2004;103:3783-8.
[137] Aertgeerts K, Levin I, Shi L, Snell GP, Jennings A, Prasad GS, et al. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J Biol Chem 2005;280:19441-4.
[138] Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 1999;274:36505-12.
[139] Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A 1994;91:5657-61.
[140] Rettig WJ, Garin-Chesa P, Beresford HR, Oettgen HF, Melamed MR, Old LJ. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci U S A 1988;85:3110-4.
[141] Huber MA, Kraut N, Park JE, Schubert RD, Rettig WJ, Peter RU, et al. Fibroblast activation protein: differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin tumors. J Invest Dermatol 2003;120:182-8.
[142] Cheng JD, Dunbrack RL, Jr., Valianou M, Rogatko A, Alpaugh RK, Weiner LM. Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res 2002;62:4767-72.
[143] Aggarwal S, Brennen WN, Kole TP, Schneider E, Topaloglu O, Yates M, et al. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2008;47:1076-86.
[144] Christiansen VJ, Jackson KW, Lee KN, McKee PA. Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys 2007;457:177-86.
[145] Edosada CY, Quan C, Wiesmann C, Tran T, Sutherlin D, Reynolds M, et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J Biol Chem 2006;281:7437-44.
[146] Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, McKee PA. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006;107:1397-404.
[147] Edosada CY, Quan C, Tran T, Pham V, Wiesmann C, Fairbrother W, et al. Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)-Pro(1)-cleaving specificity. FEBS Lett 2006;580:1581-6.
[148] Underwood R, Chiravuri M, Lee H, Schmitz T, Kabcenell AK, Yardley K, et al. Sequence, purification, and cloning of an intracellular serine protease, quiescent cell proline dipeptidase. J Biol Chem 1999;274:34053-8.
[149] McDonald JK, Leibach FH, Grindeland RE, Ellis S. Purification of dipeptidyl aminopeptidase II (dipeptidyl arylamidase II) of the anterior pituitary gland. Peptidase and dipeptide esterase activities. J Biol Chem 1968;243:4143-50.
[150] Araki H, Li Y, Yamamoto Y, Haneda M, Nishi K, Kikkawa R, et al. Purification, molecular cloning, and immunohistochemical localization of dipeptidyl peptidase II from the rat kidney and its identity with quiescent cell proline dipeptidase. J Biochem (Tokyo) 2001;129:279-88.
[151] Eisenhauer DA, McDonald JK. A novel dipeptidyl peptidase II from the porcine ovary. Purification and characterization of a lysosomal serine protease showing enhanced specificity for prolyl bonds. J Biol Chem 1986;261:8859-65.
[152] Sakai K, Ren S, Schwartz LB. A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 1996;97:988-95.
[153] Huang K, Takagaki M, Kani K, Ohkubo I. Dipeptidyl peptidase II from porcine seminal plasma: purification, characterization, and its homology to granzymes, cytotoxic cell proteinases (CCP 1-4). Biochim Biophys Acta 1996;1290:149-56.
[154] Fukasawa KM, Fukasawa K, Higaki K, Shiina N, Ohno M, Ito S, et al. Cloning and functional expression of rat kidney dipeptidyl peptidase II. Biochem J 2001;353:283-90.
[155] Chiravuri M, Agarraberes F, Mathieu SL, Lee H, Huber BT. Vesicular localization and characterization of a novel post-proline-cleaving aminodipeptidase, quiescent cell proline dipeptidase. J Immunol 2000;165:5695-702.
[156] Chiravuri M, Lee H, Mathieu SL, Huber BT. Homodimerization via a leucine zipper motif is required for enzymatic activity of quiescent cell proline dipeptidase. J Biol Chem 2000;275:26994-9.
[157] McDonald JK, Schwabe C. Dipeptidyl peptidase II of bovine dental pulp. Initial demonstration and characterization as a fibroblastic, lysosomal peptidase of the serine class active on collagen-related peptides. Biochim Biophys Acta 1980;616:68-81.
[158] Klener P, Lojda Z, Haber J, Kvasnicka J. Possible prognostic significance of the assessment of dipeptidylpeptidase II in peripheral blood lymphocytes of patients with chronic lymphocytic leukemia. Neoplasma 1987;34:581-6.
[159] Komatsu M, Urade M, Yamaoka M, Fukasawa K, Harada M. Alteration in dipeptidyl peptidase activities in cultured human carcinoma cells. J Natl Cancer Inst 1987;78:863-8.
[160] Krepela E, Prochazka J, Mynarikova H, Karova B, Cermak J, Roubkova H. Lysosomal dipeptidyl-peptidases I and II in human squamous cell lung carcinoma and lung parenchyma. Neoplasma 1996;43:171-8.
[161] Schlagenhauff B, Klessen C, Teichmann-Dorr S, Breuninger H, Rassner G. Demonstration of proteases in basal cell carcinomas. A histochemical study using amino acid-4-methoxy-2-naphthylamides as chromogenic substrates. Cancer 1992;70:1133-40.
[162] Frohlich E, Maier E, Mack AF, Garbe C. Dipeptidyl peptidase II is not a marker for progression in melanoma. J Dermatol Sci 2009;53:68-71.
[163] Chiravuri M, Schmitz T, Yardley K, Underwood R, Dayal Y, Huber BT. A novel apoptotic pathway in quiescent lymphocytes identified by inhibition of a post-proline cleaving aminodipeptidase: a candidate target protease, quiescent cell proline dipeptidase. J Immunol 1999;163:3092-9.
[164] Chiravuri M, Huber BT. Aminodipeptidase inhibitor-induced cell death in quiescent lymphocytes: a review. Apoptosis 2000;5:319-22.
[165] Abbott CA, Yu DM, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem 2000;267:6140-50.
[166] Ajami K, Abbott CA, Obradovic M, Gysbers V, Kahne T, McCaughan GW, et al. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry 2003;42:694-701.
[167] Bjelke JR, Christensen J, Nielsen PF, Branner S, Kanstrup AB, Wagtmann N, et al. Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. The Biochemical journal 2006;396:391-9.
[168] Lankas GR, Leiting B, Roy RS, Eiermann GJ, Beconi MG, Biftu T, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005;54:2988-94.
[169] Jiaang WT, Chen YS, Hsu T, Wu SH, Chien CH, Chang CN, et al. Novel isoindoline compounds for potent and selective inhibition of prolyl dipeptidase DPP8. Bioorg Med Chem Lett 2005;15:687-91.
[170] Ajami K, Abbott CA, McCaughan GW, Gorrell MD. Dipeptidyl peptidase 9 has two forms, a broad tissue distribution, cytoplasmic localization and DPIV-like peptidase activity. Biochim Biophys Acta 2004;1679:18-28.
[171] Olsen C, Wagtmann N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene 2002;299:185-93.
[172] Dubois V, Lambeir AM, Van der Veken P, Augustyns K, Creemers J, Chen X, et al. Purification and characterization of dipeptidyl peptidase IV-like enzymes from bovine testes. Front Biosci 2008;13:3558-68.
[173] Schade J, Stephan M, Schmiedl A, Wagner L, Niestroj AJ, Demuth HU, et al. Regulation of expression and function of dipeptidyl peptidase 4 (DP4), DP8/9, and DP10 in allergic responses of the lung in rats. J Histochem Cytochem 2008;56:147-55.
[174] Maes MB, Dubois V, Brandt I, Lambeir AM, Van der Veken P, Augustyns K, et al. Dipeptidyl peptidase 8/9-like activity in human leukocytes. J Leukoc Biol 2007;81:1252-7.
[175] Van der Veken P, De Meester I, Dubois V, Soroka A, Van Goethem S, Maes MB, et al. Inhibitors of dipeptidyl peptidase 8 and dipeptidyl peptidase 9. Part 1: identification of dipeptide derived leads. Bioorg Med Chem Lett 2008;18:4154-8.
[176] Van Goethem S, Van der Veken P, Dubois V, Soroka A, Lambeir AM, Chen X, et al. Inhibitors of dipeptidyl peptidase 8 and dipeptidyl peptidase 9. Part 2: isoindoline containing inhibitors. Bioorg Med Chem Lett 2008;18:4159-62.
[177] Drucker DJ. Therapeutic potential of dipeptidyl peptidase IV inhibitors for the treatment of type 2 diabetes. Expert Opin Investig Drugs 2003;12:87-100.
[178] Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 2002;122:531-44.
[179] Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med 2004;32:848-51.
[180] Thorens B. Glucagon-like peptide-1 and control of insulin secretion. Diabete Metab 1995;21:311-8.
[181] Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995;136:3585-96.
[182] Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;214:829-35.
[183] Deacon CF, Danielsen P, Klarskov L, Olesen M, Holst JJ. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 2001;50:1588-97.
[184] Deacon CF, Hughes TE, Holst JJ. Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes 1998;47:764-9.
[185] Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995;44:1126-31.
[186] Zander M, Madsbad S, Deacon CF, Holst JJ. The metabolite generated by dipeptidyl-peptidase 4 metabolism of glucagon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes. Diabetologia 2006;49:369-74.
[187] Kim D, Kowalchick JE, Edmondson SD, Mastracchio A, Xu J, Eiermann GJ, et al. Triazolopiperazine-amides as dipeptidyl peptidase IV inhibitors: close analogs of JANUVIA (sitagliptin phosphate). Bioorg Med Chem Lett 2007;17:3373-7.
[188] Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin -7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005;48:141-51.
[189] Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003;46:2774-89.
[190] Ahren B. Dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. Diabetes Care 2007;30:1344-50.
[191] Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368:1696-705.
[192] Bjelke JR, Christensen J, Branner S, Wagtmann N, Olsen C, Kanstrup AB, et al. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 2004;279:34691-7.
[193] Chien CH, Huang LH, Chou CY, Chen YS, Han YS, Chang GG, et al. One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem 2004;279:52338-45.
[194] Chien CH, Tsai CH, Lin CH, Chou CY, Chen X. Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 2006;45:7006-12.
[195] Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 1999;140:5356-63.
[196] Lambeir AM, Proost P, Scharpe S, De Meester I. A kinetic study of glucagon-like peptide-1 and glucagon-like peptide-2 truncation by dipeptidyl peptidase IV, in vitro. Biochem Pharmacol 2002;64:1753-6.
[197] Pauly RP, Rosche F, Wermann M, McIntosh CH, Pederson RA, Demuth HU. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J Biol Chem 1996;271:23222-9.
[198] Frohman LA, Downs TR, Heimer EP, Felix AM. Dipeptidylpeptidase IV and trypsin-like enzymatic degradation of human growth hormone-releasing hormone in plasma. J Clin Invest 1989;83:1533-40.
[199] Chen YS, Chien CH, Goparaju CM, Hsu JT, Liang PH, Chen X. Purification and characterization of human prolyl dipeptidase DPP8 in Sf9 insect cells. Protein Expr Purif 2004;35:142-6.
[200] Chien CH, Tsai CH, Lin CH, Chou CY, Chen X. Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 2006;45:7006-12.
[201] Schmidt TG, Skerra A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2007;2:1528-35.
[202] Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997;17:353-60.
[203] Lee DF, Chen CC, Hsu TA, Juang JL. A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol 2000;74:11873-80.
[204] O'Reilly DR, Miller LK, Luckow aVA. Baculovirus Expression Vectors: A Laboratory Manual. New York: Oxford University Press, 1994.
[205] Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, Third edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.
[206] Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 1996;116:190-9.
[207] Anderson KN, Baban D, Oliver PL, Potter A, Davies KE. Expression profiling in spinal muscular atrophy reveals an RNA binding protein deficit. Neuromuscul Disord 2004;14:711-22.
[208] Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, et al. A genomic regulatory network for development. Science 2002;295:1669-78.
[209] Murphy CI, Piwnica-Worms H. Overview of the baculovirus expression system. Curr Protoc Neurosci 2001;Chapter 4:Unit 4 18.
[210] Qi SY, Riviere PJ, Trojnar J, Junien JL, Akinsanya KO. Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Biochem J 2003;373:179-89.
[211] Ziegler SF, Ramsdell F, Hjerrild KA, Armitage RJ, Grabstein KH, Hennen KB, et al. Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur J Immunol 1993;23:1643-8.
[212] Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S. Comparison of affinity tags for protein purification. Protein Expr Purif 2005;41:98-105.
[213] Kang NS, Ahn JH, Kim SS, Chae CH, Yoo SE. Docking-based 3D-QSAR study for selectivity of DPP4, DPP8, and DPP9 inhibitors. Bioorg Med Chem Lett 2007;17:3716-21.
[214] Deacon CF, Ahren B, Holst JJ. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opin Investig Drugs 2004;13:1091-102.
[215] Pei Z. From the bench to the bedside: dipeptidyl peptidase IV inhibitors, a new class of oral antihyperglycemic agents. Curr Opin Drug Discov Devel 2008;11:512-32.
[216] Deacon CF. Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for type 2 diabetes. Expert Opin Investig Drugs 2007;16:533-45.
[217] Deacon CF. Alogliptin, a potent and selective dipeptidyl peptidase-IV inhibitor for the treatment of type 2 diabetes. Curr Opin Investig Drugs 2008;9:402-13.
[218] Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab 2008;10:376-86.
[219] Van der Veken P, Soroka A, Brandt I, Chen YS, Maes MB, Lambeir AM, et al. Irreversible inhibition of dipeptidyl peptidase 8 by dipeptide-derived diaryl phosphonates. J Med Chem 2007;50:5568-70.
[220] Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 2007;50:2297-300.
[221] Brandt I, Joossens J, Chen X, Maes MB, Scharpe S, De Meester I, et al. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile). Biochem Pharmacol 2005;70:134-43.
[222] Burkey BF, Hoffmann PK, Hassiepen U, Trappe J, Juedes M, Foley JE. Adverse effects of dipeptidyl peptidases 8 and 9 inhibition in rodents revisited. Diabetes Obes Metab 2008.
[223] Connolly BA, Sanford DG, Chiluwal AK, Healey SE, Peters DE, Dimare MT, et al. Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety. J Med Chem 2008;51:6005-13.
[224] Tang HK, Tang HY, Hsu SC, Chu YR, Chien CH, Shu CH, et al. Biochemical Properties and Expression Profile of Human Prolyl Dipeptidase DPP9. Arch Biochem Biophys 2009.
[225] Chou CY, Chien CH, Han YS, Prebanda MT, Hsieh HP, Turk B, et al. Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biochem Pharmacol 2008;75:1601-9.
[226] Yao HT, Wu YS, Chang YW, Hsieh HP, Chen WC, Lan SJ, et al. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes. Drug Metab Dispos 2007;35:1042-9.
[227] Fulop V, Bocskei Z, Polgar L. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 1998;94:161-70.
[228] Chang HC, Chang GG. Involvement of single residue tryptophan 548 in the quaternary structural stability of pigeon cytosolic malic enzyme. J Biol Chem 2003;278:23996-4002.
[229] Chang HP, Chou CY, Chang GG. Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride. Biophys J 2007;92:1374-83.
[230] Tang HK, Tang HY, Hsu SC, Chu YR, Chien CH, Shu CH, et al. Biochemical properties and expression profile of human prolyl dipeptidase DPP9. Arch Biochem Biophys 2009;485:120-7.
[231] Aertgeerts K, Ye S, Tennant MG, Kraus ML, Rogers J, Sang BC, et al. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 2004;13:412-21.
[232] Bar J, Weber A, Hoffmann T, Stork J, Wermann M, Wagner L, et al. Characterisation of human dipeptidyl peptidase IV expressed in Pichia pastoris. A structural and mechanistic comparison between the recombinant human and the purified porcine enzyme. Biol Chem 2003;384:1553-63.
[233] Field CJ. Use of T cell function to determine the effect of physiologically active food components. Am J Clin Nutr 2000;71:1720S-5S; discussion 6S-7S.
指導教授 陳新、徐敬衡
(Xin Chen、Chin-Hang Shu)
審核日期 2009-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明