博碩士論文 90324012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.211.135.32
姓名 陳雅文(Ya-Wen Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米級二氧化鈦及鈦酸鋇之合成與鑑定
(Synthesis and Characterization of Nanosized Titanium Dioxide and Barium Titanate)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 汽機車尾氣在富氧條件下NOx之去除★ 耐高溫燃燒觸媒的配製及鑑定
★ 高效率醋酸乙酯生產製程研究★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究
★ Au/FexOy 奈米材料之製備 及CO 氧化的應用★ 非晶態奈米鐵之製備與催化性質研究
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中 文 摘 要
本研究主要目的係利用四氯化鈦酸解所得之奈米級二氧化鈦合成超微細鈦酸鋇。酸解所得之二氧化鈦粉體為針片狀且約在80-90奈米,再利自製所得之二氧化鈦粉體作為鈦源,使用氫氧化鋇為鋇源,以水熱合成的方法,合成條件在中低溫(
摘要(英) ABSTRACT
The objectives of this research were to synthesize ultra-fine BaTiO3 with home-made nano-size TiO2 using the hydrothermal method and investigate the influence of synthesis parameter. The nanosized TiO2 sol was successfully synthesized by the direct thermal-hydrolysis of titanium tetrachloride with various acids. According reports, barium titanate is an important electronic ceramic and employed in the powder form as the fundamental dielectricmaterial of multilayer capacitors. Due to the closed nature of the hydrothermal system and the desire for particles of decreased size, experimental designs were employed to investigate the effects of various synthesis process treatment on the final particle attributes using low reaction temperatures (
關鍵字(中) ★ 奈米級二氧化鈦
★ 鈦酸鋇
★ 陶瓷電容器
關鍵字(英) ★ hydrothmal method
★ titanium dioxide
★ barium titanate
論文目次 TABLE OF CONTENTS
ABSTRACT………………………………………………………………i
TABLE OF CONTENTS………………………………………………..iii
LIST OF TABLES………………………………………………..…...…vi
LIST OF FIGURES…………………………………………..……....…vii
Chapter 1. INTRODUCTION………………………………………….1
1.1 Titanium dioxide..…………………………………………………….1
1.2 Barium titanate……………………….………………………………8
1.3 Objective…………………………………………………………….10
Chapter 2. LITERATURE REVIEW………………………………...12
2.1 Titanium Dioxide……………………………………………………12
2.1.1 Synthesis method……………………………………………...12
2.1.2 Inorganic salt as a precursor…………………………………..14
2.1.3 Alkoxide as a precursor……………………………………….17
2.2 Barium Titanate……………………………………………………..20
2.2.1 History of ferroelectricity……………………………………..20
2.2.2 Definition of ferroelectricity…………………………………..21
2.2.3 Crystal Structure and the Origin of Ferroelectricity…………..23
2.2.4 Dielectric properties…………………………………………..29
2.3 Hydrothermal Synthesis of Barium Titanates……………………….39
2.3.1 Titanium precursor solubility…………………………………44
2.3.2 Barium precursor solubility…………………………………..45
2.3.3 Formation mechanisms based on soluble precursors………..48
2.4 Hydrothermal Processing Conditions………………………………51
2.4.1 Excess precursor Ba/Ti ratio………………………………….51
2.4.2 CO2-free environment…………………………………………52
2.4.3 Solution pH……………………………………………………52
Chapter 3. EXPERIMENTAL SECTION……………………………54
3.1 chemicals……………………………………………………………54
3.2 Titanium dioxide Synthesis…………………………………………54
3.2.1 Different acid species………………………………………..54
3.2.2 Different acid concentration…………………………………55
3.3 Barium titanate Synthesis…………………………………………62
3.3.1 Different Ba/Ti ratio…………………………………………62
3.3.2 Different reaction temperature………………………………62
3.3.3 Different reaction time………………………………………63
3.4 Characterization…………………………………………………...66
3.4.1 X-ray Diffraction (XRD)…………………………………..66
3.4.2 Scanning Electron Microscopy (SEM)…………………….67
3.4.3 Transmission Electron Microscopy (TEM)………………..67
3.4.4 Dynamic Light Scattering (DLS) ………………………….68
3.4.5 Thermogravimetric Analysis (TGA) ………………………68
Chapter 4. CHARCATERIZATION OF TITANIUM DIOXIDE…..69
4.1 The effects of acid species…………………………………………..69
4.2 The effects of H/Ti ratio…………………………………………….80
4.3 Thermal analysis…………………………………………………….93
Chapter 5. CHARCATERIZATION OF BARIUM TITANATE POWDER…………………………………………………99
5.1The effects of H/Ti ratio……………………………………………..99
5.2 The effects of reaction temperature………………………………..113
5.3 The effects of reaction time……………………………………..…133
5.4 Lattice parameter…………………………………………………..147
Chapter6. CONCLUSIONS…………………………………………………….. 156
LITERATURE CITED………………………………………………158
LIST OF TABLES
Table 1.1. X-ray data of TiO2…………………………………………..4
Table 2.1. The 32 Crystal Point Groups………………………………..22
Table 2.2. Methods for wet-chemical synthesis of barium titanate
powders……………………………………………………..40
Table 2.3. Literature for the aqueous low temperature and hydrothermal synthesis of BaTiO3 powders………………………………..43
Table 2.4. Solubility of Ba(OH)2 in water………………………………46
Table 4.1. Mean diameter of TiO2 crystallite from SEM TEM and DLS results………………………………………………………...73
Table 4.2. The morphologies of the titania prepared with various acids..73
Table 4.3. Mean diameter of TiO2 particles measured by SEM and DLS
……………………………………………..………………..84
Table 4.4. Weight loss of TiO2 prepared with various acids…………….95
Table 5.1. The properties of Ti-precursors……………………………..100
Table 5.2. Summary of the experimental results. The as-synthesized BaTiO3 powder using HCl-TiO2 as the precursor were characterized by XRD………………………………………144
Table 5.3. Summary of the experimental results. The as-synthesized BaTiO3 powder using HClO4-TiO2 as the precursor were characterized by XRD………………………………………146
Table 5.4. Identification of XRD peaks for cubic BaTiO3……………..149
Table 5.5. Identification of XRD peaks of tetragonal BaTiO3…………150
Table 5.6. Lattice parameters of the samples…………………………..154
LIST OF FIGURES
Figure 1.1. (A) structure of rutile; (B) structure of anatase………………6
Figure 2.1. The change in ferroelectric hysteresis with temperature for ceramic BaTiO3…………………………………………….24
Figure 2.2. The perovskite structure of BaTiO3 ………………………...25
Figure 2.3. Schematics of unit-cell distortions of the single crystal BaTiO3……………………………………………………27
Figure 2.4. (a) Dimension of pseudocubic unit cell of BaTiO3
(b) Temperature dependence of dielectric constant of single crystals of barium titanate………………………28
Figure 2.5. Dielectric constant of barium titanate ceramic as a function of temperature…………………………………………………30
Figure 2.6. Dielectric constant as a function of grain size of ceramic BaTiO3……………………………………………………..30
Figure 2.7. Schematic representation of polarization by dipole chains and bound charges…..…………………………………………..32
Figure 2.8. Schematic representation of different mechanisms of polarization………………………………………………….32
Figure 2.9. Microstructure of barium titanate ceramic. Different ferroelectric domain orientation are brought out by etching (500×)……………………………………………………….38
Figure 2.10. A typical ferroelectric hysteresis loop……………………..38
Figure 2.11. The change in barium titanate ferroelectric hysteresis loop shape with temperature…………………………………..38
Figure 2.12. Stability diagram for the Ba-Ti hydrothermal system…….46
Figure 2.13. Stability diagram for the titanium dioxide precursor……...47
Figure 2.14. (a) Schematic sketch of the in-situ reaction mechanism (b) Schematic sketch of the dissolution-precipitation reaction mechanism………………………………………………...50
Figure 3.1. The flow chat of synthesis of HCl-TiO2................................57
Figure 3.2. The flow chat of synthesis of HNO3-TiO2………………….58
Figure 3.3. The flow chat of synthesis of H2SO4-TiO2…………………59
Figure 3.4. The flow chat of synthesis of HClO14-TiO2………………..60
Figure 3.5. The flow chat f synthesis of various H/Ti ratio……………..61
Figure 3.6. The flow chat of synthesis of various H/Ti ratio……………62
Figure 3.7. The flow chat of synthesis BaTiO3………………………….65
Figure 3.8. The flow chat of synthesis BaTiO3.........................................66
Figure 4.1. The XRD patterns of TiO2 prepared with HCl, HNO3, and
HClO4, respectively……………………………………..…..74
Figure 4.2. The XRD patterns of TiO2 prepared with H2SO4……………75
Figure 4.3. The SEM micrographs of titania prepared with various acids. (A) HCl, (B) HNO3, (3) H2SO4, (4) HClO4.........……………76
Figure 4.4. The TEM images of TiO2 prepared with various acid.
(A) HCl, (B) HNO3………………………………………….77
Figure 4.5. The TEM images of TiO2 prepared with various acid
(C) HClO4, (D) H2SO4………………………………………78
Figure 4.6. The DLS patterns of TiO2 prepared with various acid.
(A) HCl, (B) HNO3………………………………………….79
Figure 4.7. The DLS patterns of TiO2 prepared with various acid.
(C) H2SO4 (D) HClO4……………………………………..80
Figure 4.8. The XRD pattern of the TiO2 prepared with HCl with various H/Ti ratios.………………………………………………..85
Figure 4.9. The XRD pattern of the TiO2 prepared with HClO4 with various H/Ti ratios………………………………………..86
Figure 4.10. The SEM micrographs of TiO2 prepared with HCl.
(A) H/Ti= 1, (B) H/Ti= 2…………………………………87
Figure 4.11. The SEM micrographs of TiO2 prepared with HClO4.
(A) H/Ti= 1, (B) H/Ti=2………………………………….88
Figure 4.12. The DLS patterns of TiO2 prepared with HCl.
(A) H/Ti= 0.5, (B) H/Ti=1…………………………………89
Figure 4.13. The DLS patterns of TiO2 prepared with HCl.
(C) H/Ti= 1.5, (D) H/Ti= 2………………………………..90
Figure 4.14. The DLS patterns of TiO2 prepared with HClO4.
(A) H/Ti= 0.5, (B) H/Ti= 1………………………………..91
Figure 4.15. The DLS patterns of TiO2 prepared with HClO4.
(A) H/Ti=1.5, (B) H/Ti= 2.0.………………………………92
Figure 4.16. Particle size of TiO2 prepared with various H/Ti ratios. (determined by DLS) (a) HCl, (b) HClO4……………..…..93
Figure 4.17. TGA curve of TiO2 prepared with HCl ..………………….96
Figure 4.18. TGA curve of TiO2 prepared with HNO3………………….97
Figure 4.19. TGA curve of TiO2 prepared with HClO4…………………98
Figure 4.20. TGA curve of TiO2 prepared with H2SO4…………………99
Figure 5.1. The XRD patterns of BaTiO3 synthesize with HCl with Ba/Ti
ratio of (a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and (e) 2.0……….104
Figure 5.2. The XRD patterns of BaTiO3 synthesize with HCl, washed with formic acid and calcined at 900℃ for 2 h. Ba/Ti ratio =
(a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and (e) 2.0……………..105
Figure 5.3. The XRD patterns of BaTiO3 prepared with HCl at Ba/Ti ratio of 1.2 and calcined at 1150℃ for 2 h…………………….106
Figure 5.4. The XRD patterns of BaTiO3 prepared with HCl at Ba/Ti ratio of 1.4 and calcined at 1150℃ for 2 h…………………….106
Figure 5.5. The XRD patterns of BaTiO3 prepared with HCl at Ba/Ti ratio of 1.6 and calcined at 1150℃ for 2 h……………………...107
Figure 5.6. The XRD patterns of BaTiO3 prepared with HCl, Ba/Ti ratio of 1.8 and calcined at 1150℃ for 2 h……………………...107
Figure 5.7. The XRD patterns of BaTiO3 prepared with HCl at Ba/Ti ratio of 2.0 and calcined at 1150℃ for 2 h……………………..108
Figure 5.8. The SEM micrographs of the BaTiO3 prepared with HCl at Ba/Ti ratio of (a) 1.2, (b) 1.4, (c) 1.6, and (d) 1.8…...........109
Figure 5.9. The TEM micrographs of the BaTiO3 prepared with HCl at Ba/Ti ratio of (a) 1.2, and (b) 1.4………………………….110
Figure 5.10. The XRD patterns of BaTiO3 synthesize with HClO4 and Ba/Ti ratio of (a) 1.2, (b) 1.4,(c) 1.6,(d) 1.8,
and (e) 2.0………………………………………………...111
Figure 5.11. The XRD patterns of BaTiO3 synthesized with HClO4 , washed by formic acid and calcined at 900℃ for 2 h. Ba/Ti ratio =
(a) 1.2, (b) 1.4, (c) 1.6, (d) 1.8, and (e) 2.0………..………112
Figure 5.12. The XRD patterns of BaTiO3 prepared with HClO4 at Ba/Ti ratio of 1.2 and calcined at 1150℃ for 2 h………………113
Figure 5.13. The XRD patterns of BaTiO3 prepared with HClO4 at Ba/Ti ratio of 1.4 and calcined at 1150℃ for 2 h………………113
Figure 5.14. The XRD patterns of BaTiO3 prepared with HClO4 at Ba/Ti ratio of 1.6 and calcined at 1150℃ for 2 h………………114
Figure 5.15. The XRD patterns of BaTiO3 prepared with HClO4 at Ba/Ti ratio of 1.8 and calcined at 1150℃ for 2 h………………114
Figure 5.16. The XRD patterns of BaTiO3 prepared with HClO4 at Ba/Ti ratio of 2.0 and calcined at 1150℃ for 2 h……………….115
Figure 5.17. The SEM micrographs of the BaTiO3 prepared with HClO4 at Ba/Ti ratio of (a) 1.2, (b) 1.4, (c) 1.6, and (d) 1.8……...116
Figure 5.18. The TEM micrographs of the BaTiO3 prepared with HClO4 at Ba/Ti ratio of (a) 1.2 and (b) 1.4………………………117
Figure 5.19. The XRD patterns of BaTiO3 synthesize with HCl at various temperatures. (a) 80, (b) 120, (c) 180, and (d) 200 ℃……122
Figure 5.20. The XRD patterns of BaTiO3 synthesize with HCl, washed by formic acid and calcined at 900℃ for 2 h. Synthesized temperature=(a) 80, (b) 120, (c) 180 and (d) 200 ℃…….123
Figure 5.21. The XRD patterns of BaTiO3 prepared with HCl at 80℃
and calcined at 1150℃ for 2 h………………………….124
Figure 5.22. The XRD patterns of BaTiO3 prepared with HCl at 120℃ and calcined at 1150℃ for 2 h………………………….124
Figure 5.23. The XRD patterns of BaTiO3 prepared with HCl at 180℃ and calcined at 1150℃ for 2 h…………………………..125
Figure 5.24. The XRD patterns of BaTiO3 prepared with HCl at 200℃ and calcined at 1150℃ for 2 h…………….……………..125
Figure 5.25. The SEM micrographs of the BaTiO3 prepared with HCl at various temperature (a) 80, (b) 120, (c) 160, (d) 200 ℃...126
Figure 5.26. The TEM micrographs of the BaTiO3 prepared with HCl at temperature of (a) 120 and (b) 180 ℃. ………………….127
Figure 5.27. The XRD patterns of BaTiO3 synthesized with HClO4 at various temperatures of (a) 80, (b) 120, (c) 180, (d) 200 ℃…………………………………………………………128
Figure 5.28. The XRD patterns of BaTiO3 synthesized with HClO4, washed by formic acid and calcined at 900℃ for 2 h Synthesized temperature = (a) 80, (b) 120, (c) 180, (d) 200 ℃…………………………………………………………129
Figure 5.29. The XRD patterns of BaTiO3 prepared with HClO4 at 80℃, H/Ti ratio of 1.2 and calcined at 1150℃ for 2 h………….130
Figure 5.30. The XRD patterns of BaTiO3 prepared with HClO4 at 120℃, Ba /Ti ratio of 1.2 and calcined at 1150℃ for 2 h……….130
Figure 5.31. The XRD patterns of BaTiO3 prepared with HClO4 at 120℃, Ba/Ti ratio of 1.2 and calcined at 1150℃ for 2 h………131
Figure 5.32. The XRD patterns of BaTiO3 prepared with HClO4 at 120℃, Ba/Ti ratio of 1.2 and calcined at 1150℃ for 2 h……….131
Figure 5.33. The SEM micrographs of the BaTiO3 prepared with HClO4 at various temperatures of (a) 80, (b) 120, (c) 160, and (d) 200 ℃…………………………………………………..132
Figure 5.34. The TEM micrographs of the BaTiO3 prepared with HClO4 at temperatures of (a) 120 and (b) 180 ℃………………133
Figure 5.35. The XRD patterns of BaTiO3 synthesized with HCl and synthesis time of (a) 3, (b) 6, (c) 12, and (d) 24 h………136
Figure 5.36. The XRD patterns for BaTiO3 synthesized with HCl, washed by formic acid and calcined at 900℃. Synthesis time = (a) 3, (b) 6, (c) 12, and (d) 24 h……………………………….137
Figure 5.37. The XRD patterns of BaTiO3 prepared with HCl at 160℃, Ba/Ti ratio of 1.2, synthesis time of 3 h and was calcined at 1150℃ for 2h…………………………………………….138
Figure 5.38. The XRD patterns of BaTiO3 prepared with HCl at 160℃, Ba/Ti ratio of 1.2, synthesis time 6 h and was calcined at 1150℃ for 2 h…………………………………………….138
Figure 5.39. The XRD patterns of BaTiO3 prepared with HCl at 160℃, Ba/Ti ratio of 1.2, synthesis time 12 h and calcined at 1150℃ for 2 h……………………………………………139
Figure 5.40. The XRD patterns of BaTiO3 prepared with HCl at 160℃, Ba/Ti ratio of 1.2, synthesis time of 24 h and was calcined at 1150℃ for 2 h…………………………………………..139
Figure 5.41. The XRD patterns of BaTiO3 synthesized with HClO4 with various synthesis time of (a) 3, (b) 6, (c) 12,
and (d) 24 h……………………………………………….140
Figure 5.42. The XRD patterns for BaTiO3 synthesized with HCl, washed by formic acid and calcined at 900℃ for 2h……………..141
Figure 5.43. The XRD pattern of BaTiO3 prepared with HClO4 at 160℃, Ba/Ti ratio of 1.2, synthesis time of 3 h and then calcined at 1150℃ for 2 h…………………………………………….142
Figure 5.44. The XRD pattern of BaTiO3 prepared with HClO4 at 160℃, Ba/Ti ratio of 1.2, synthesis time of 6 h and then calcined at 1150℃ for 2 h…………………………………………….142
Figure 5.45. The XRD pattern of BaTiO3 prepared with HClO4 at 160℃ Ba/Ti ratio of 1.2, synthesis time of 12 h and then calcined at 1150℃ for 2 h…………………………………………..143
Figure 5.46. The XRD pattern of BaTiO3 prepared with HClO4 at 160℃, Ba/Ti ratio of 1.2, synthesis time 24 h and was calcined at 1150℃ for 2 h……………………………………………143
Figure 5.47. The Lattice parameter vs. synthesis temperature.
(a) HCl-TiO2 as the precursor, (b) HClO4-TiO2 as the precursor…………………………………………………154
Figure 5.48. (a) Comparison of the present room-temperature 25 ℃ tetragonality with particle size of results for hydrothermal BaTiO3 powder in the literature. (b) Values of the c/a ratios as a function of particle size of BaTiO3 powders………..155
參考文獻 LITERATURE CITED
Arlt, G. N., Pertser, A. and DeWith, G., “Dielectric Property of Fined Grained Ceramics,” J. Appl. Phys., 58, 1619 (1985).
Arlt, G., “Twinning in Ferroelectric and Ferroelectric Ceramic : Stress Relif,” J. Mater. Sci., 25, 2655 (1990).
Anliker, M., Brugger, H.R. and Kanzig, W., Helv. Phys. Acta., 27, 99 (1954).
Alvazzi Delfrate, M., Leoni, M., Nanni, P., Melioli, E., Watts, B.E., and Leccabue, F., ”Electrical Characterization of BaTiO3 Made by Hydrothermal Methods” J. Mater. In Electronics, 5, 153 (1994).
Bind, J. M., Dupin, T., Schafer, J. and Titeux, M., “Industrial Synthesis of Coprecipitated BaTiO3Powders,” J. Mater., 1, 60 (1987).
Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney B., Rouse M., Apply. Catal., 17, 25 (1998).
Baes, C. F. and Mesmer, R. E., ”Hydrolysis of Cations,” John Wiley& Sons, New York, 98-157 (1976).
Bickley, R. J., Gonzalez-Carrenno T., Lees J.S., Palmisano L. and Tilley R. J. D., J. Solid State Chem., 92, 178 (1991).
Buessem, W. R., Cross, L. E., and Goswami, A. K., “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49, 33 (1966).
Braun, A., Pelizzetti, E., Photochemical Conversion and Storage of Solar Energy, Kluwer, Dordrecht., 551, (1991).
Bischoff, B. L.; Anderson, M. A., Peptization process in the sol-gel preparation of porous anatase (TiO2), Chem. Mater., 7, 1772-1778 (1995).
Cheng, H.,Ma J., Zhao, Z., Qi, L., Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7, 663-671(1995).
Cui, H. S. Shen, Y. M., Gao, K. Dwight, A. Word, Mater. Res. Bull., 28 5196 (1993).
Characerization of Polytitanates in th System BaO-TiO2,” J. Mater. Sci. Let., 7 601-603 (1988).
Chu, M. S. H. ” Manufacturing Dielectric Powders”, Am. Ceram. Soc. Bull., 74 (6) , 69 (1995).
Chemseddine, A. and Moritz, T., Eur. J. Inorg. Chem., 2, 235, (1999).
Chemseddine, A. and Boehm, H. P., J. Mol. Cat., 60, 295 (1990).
Clark, R. J. H., Ph.D. Thesis, The chemistry of titanium and vanadium, University college, London (Great Britain), (1968).
Chrysicopoulou, P., Davazoglou, D., Trapalis, C., Kordas G., Optical properties of very thin (<100 nm) sol-gel TiO2 films, Thin Solid Films, 323, 188-193 (1998).
Chaput, F. C. and Boilot J-P., “ Alkoxide-Hydroxide Route to Synthesize BaTiO3-Based Powders,” J. Am. Ceram. Soc., 73 [4] 942-948 (1990).
Cheng, H., Ma J., Zhao, Z., Qi, L., Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7, 663-671 (1995).
Dutta, P. K., Asiaie, R., Akbar, S. A. and Zhu, W., “Hydrthermal Synthesis and Dielectric Properties of Tetragonal BaTiO3,” Chem. Mater., 6, 1542 (1994).
Dutta, P.K., Asiaie, R., Akbar, S.A., and Zhu, W., “Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3,” Chem. Mater., 6, 1542-1548 (1994).
Elfenthal, L., Klein, E., Rosendahl, F., Process for the production of a fine particle titanium dioxide, Assignee: Kronos USA, Inc., U. S. Patent 5, 215, 580 (1993).
Eckert, J.O., Hung-Houston, C.G., Gersten B.L., Lencka, M.M., and
Fujishima, A., Hashimoto, K., Kubota Y. J., Surf. Sci. Soc., Jpn., 16, 188 (1995).
Fujishima, A. and Honda, K., Nature, 238, 37 (1972).
Foulger, D. L., Necini, P. G., Poeri, S., Preparation of anatase titanium dioxide, Assignee: Tioxide Group Services Limited., U. S. Patent 5, 630, 995 ( 1997).
Fu, X.A., L.A. Clark, W.A. Zeltner, M.A. Anderson, J. Photochem. Photobiol. A: Chem., 97, 181 (1996)
Foulger, D. L., Necini, P. G., Poeri, S., Preparation of anatase titanium dioxide, Assignee: Tioxide Group Services Limited., U. S. Patent 5, 630, 995 (1997).
Fukai, K., Hidaka, K., Aoki M., and Abe, K., “Preparation and Properties of Uniform Fine Perovskite Powders by Hydrothermal Synthesis,” Ceram Inter., 16, 285 (1990).
Fox, G. R., Adair, J. H., and Newnham, R. E., “Effects of pH and H2O2 Upon Coprecipitated PbTiO3 Powders” in J. Mater. Sci., 26, 1187-1191 (1911).
Goswami, A. K., “Dielectric Properties of Unsintered Barium TItanate.” J. Appl. Phys., 40, 619 (1969).
Gonzalez, R. J., Zallen R. and Berger H., Phys. Rev., B, 55, 7014 (1997).
Hydrothermal Reaction,” Nippon Kagaku Kaishi, 6, 985-990 (1978).
Hydrothermal Synthesis of Ceramic Powders,” Chem. Mater., 5, 61-70 (1993).
Haddow, A. J., Oxidation of titanium tetrachloride to form titanium dioxide, Assignee: Tioxide Group Services Limited., U. S. Patent 5, 599, 519 (1997).
Hoffmann, M. R., Martin, S.T., Choi, W., Bahnemann, D.W., Chem. Rev., 95, 69 (1995).
Harma, H., J. Chem. Res., 37, 1317 (1998).
Hilton, A. D. and R. Forst, “Recent Developments in the Manufacture of Barium Titanate Powders,” Key Eng. Mater., 66&67, 145-184 (1992).
Hertl, W., “Kinetics of Barium Titanate Synthesis,” J. Am. Ceram. Soc., 71, 879-883 (1988).
Hennings, D., G. Rosenstein, and H. Schreinemacher, “Hydrothermal Preparation of Barium Titanate from Barium- Titanium Acetate Gel Precursors,” J. Eur. Ceram. Soc., 8, 107-115 (1991).
Hennings, D. and H. Schreinemacher, “Characterization of Hydrothermal Barium Titanate,” J. Eur. Ceram. Soc., 9, 41-46 (1991).
Hench, L. L. and J. K. West, “Principles of Electronic Ceramics,” 1990 by John Wiley & Sons, Inc.
Hu, M. Z.-C., G. A. Miller, E. A. Payzant, and C. J. Rawn, “Homogeneous (Co)precipitation of Inorganic Salts for Synthesis of Monodispersed Barium Titanate Particles,” J. Mater. Sci., 35, 2927-2936 (2000).
Hu, M. Z.-C., V. Kurian, E. A. Payzant, C. J. Rawn, and R. D. Hunt, “Wet-chemical Synthesis of Monodispersed Barium Titanate Particles-hydrothermal Conversion of TiO2 Microspheres to Nanocrystalline BaTiO3,” Powder Technol., 110, 2-14 (2000).
Heung,Y. H., Anderson, M.A. J. Environ. Eng., 122, 217 (1996)
Jalava, J. P., Heikkila L., Hovi O., Laiho R., Hitunen E., Hakanen A. and Santacesaria E., Tonello M., Storti G., Pace R.C. and Carra S.J., J. Colloid Interface Sci., 111, 44 (1986).
Kim, D. H., Anderson, M. A., Sol. Energy Mater. Sol. Cells, 28, 345, (1994).
Kim, D. H., Anderson, M. A., Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin-film electrode, Environ. Sci. Technol., 28, 479-483 (1994).
Kingery, W. D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, Second Ed., John Wiley & Sons, New Your (1976).
Kostelnik, R.J., Wen, F. C., High solids anatase TiO2 slurries, Assignee: SCM Chemicals, Inc., U. S. Patent 5,746,819, (1998).
Krol R., Goossens A. and Schoonman J., J. Electrochem. Soc., 144, 1723 (1997).
Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., “Preparation of Tetragonal Barium Titanate Thin Film on Titanium Metal Substrate by Hydrothermal Method,” J. Am. Ceram. Soc., 74 [2] 369-374 (1991).
Kominami, H., Kohno, M., and Kera, Y., J. Mater. Chem., 10, 1151 (2000).
Lee, J. B., “ Elevated Tmeperture Potential-pH Diagrams for the Cr-H2O Ti-H2O, Mo-H2O, and Pt-H2O Systems,” Corrosion, NACE, 37, 467 (1981).
Lange, R. W., Sowman, H. G., Shaped and fired articles of TiO2 , Assignee: Minnesota Mining and Manufacturing Company, U. S. Patent 4,166,14, (1979).
Li, G. L., Wang, G. H., Synthesis of nanometer-sized TiO2 particles by a mcroemulsion method, NanoStrustured Materials, 11, 663-668 (1999).
Li, G. L., Wang, G. H., Synthesis and characterization of rutile TiO2 nanowhiskers, J. Mater. Res., 14, 3346-3354 (1999).
Lange, S. B., Sourcebook of Pyroelecricity, Gordon and Breach, London, (1974).
Lencka, M.M. and Riman, R.E., “Thermodynamic Modeling of Hydrothermal Synthesis Synthesis of Ceramic Powders,” Chem. Mater., 5, 61 (1993).
Lenka, M. M., and Riman, R. E., “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders,” Chem. Mater., 5, 61-70 (1993).
Man, H. D., Lee, B. H., Kim, S. J., Jung, C. H., Lee, J. H., Park, S., Reparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation, Japanese J. App. Phy., 4603-4608 (1998).
Man, H. D., Lee, B. H., Kim, S. J., Jung, C. H., Lee, J. H., Park, S., Reparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation, Japanese J. App. Phy., 4603-4608 (1998)
Moritz, T., Reiss, J., Diesner, K., Su, D., and Chemseddine, A., J. Phys. Chem. Soc., 118, 6716 (1996).
Muggli, D. S., Falconer J. L., J. Cal., 175, 213 (1998).
Matthews, R.W., Sol. Energy, 38, 405 (1987).
Nanni, P., Leoni, M., Buscaglia, V. and Aliprandi, G., “Low-Temperature Aqueous Preparation of Barium Matatitanate Powders”, J. Europ. Ceram. Soc., 14, 85, (1994).
Oliver, P. M., Waston, G. W., Toby, K. E., Parker, S. C., Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase, J. Mater. Chem., 7, 563-568 (1997).
Potdar, H. S., Deshpande, S. B. and Deshpande, A. S., Khollam, Y. B., Patil, A. J., Pradhan, S. D., Date, S. K., “Simplified Chemical Route for The Synthesis of Barium Titanyl Oxalate,” J. Inorg. Mater., 3, 613 (2001).
Potdar, H. S., Deshpande, S. B. and Date, S. K., “Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders,” Mater. Chem. Phys., 58, 121 (1999).
Park, Z. H., Shin, H. S., Lee, B. K. and Cho, S. H., “Particle Size Control of Barium Titanate Prepared from Barium Titanyl Oxlate,” J. Am. Ceram. Soc., 80, 1599 (1997).
Pfaff, G., “BaTiO3 Preparation by Reaction of TiO2 with Ba(OH)2” J. Euro. Ceram. Soc., 8, 35-39 (1991).
Park, H. K., Kim, D. K., Kim, C. H., Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4, J. Am. Ceram. Soc., 80, 743-749 (1997).
Pichat, P., Disdier, J., Hoang-Van C., Mas, D., Goutailler, G., Gaysse, C., Catal. Today 63, 363, (2000).
Park, S. D., Cho, Y. H., Kim, W. W., Kim, S. J., Understanding on homogeneous spontaneous precipitation for monodispersed of TiO2 ultrafine powders with rutile phase around room temperature, J. Solid State Chem, 146, 230-238 (1999).
Parmon, V. N., Catal. Today, 39, 207 (1997)
Riman, R. E., “Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate,” J. Am. Ceram. Soc., 79 [11], 2929-2939 (1996).
Tada, H., Tanaka, M., Langmuir 13 360 (1997).
Tsai, S. J., Chen S., Catal. Today 33, 227 (1997).
Sakamoto, M., Yokkaichi, H. O., Suzuka, S. K., Yokkaichi, Y. Y., Titania sol, Assignee: Ishihara Sangyo Kaisha, Ltd., U. S. Patent 4,880,703 (1991).
Sato, G., Arima, Y., Tanaka, H., Hiraoka, S., Titanium dioxide sol and process for preparation thereof, Assignee: Catalyst&Chemical Industries, Co., Ltd., U. S. Patent 5,403,513 (1995).
Sopyan, I., Watanabe, Murasawa, Hashimoto, Fujishima, An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, J. Photo A., 79-86 (1996).
Rabenau, A., “The Role of Hydrothermal Synthesis in Materials Science,” J. Mater. Edu., 10, 543 (1988).
Takahashi, H., Sakai, A., Hattori, M., Dendrite or asteriodal titanium dioxide nicro-particles, Assignee: Ishihara Sangyo Kaisha, Ltd., U. S. Patent 5,536,448 (1996).
Tunashima, M., Muraoka, K., Yamamoto, K., Mikami, M., Sasaki, S., Stable anatase titanium dioxide and process for preparing the same, Assignee: Sakai Chemical Industry Co., Ltd., U. S. Patent 6,113,873 (2000).
Valasek J., “Piezo-Electric and Allied Phenomena in Rochelle Salt”, Phys.Rev., 17, 475 (1921).
Wang, Y. G., Zhang, W. L. and Zhang, P. L., “Size Driven Phase Transition in Ferroelectric Particles,” Solid State Comm., 90, 329 (1994)
Wul, B., and Goldman, I. M., C. R., Acad. Sci. URSS., 46, 139 (1945).
Wul, A., and Goldman, I. M., C. R., Acad. Sci. URSS., 51, 21 (1946).
Yen, F. S., Hsiang, H. I. and Chang, Y. H., “Cubic to Tetragonal Phase Transform of Untrafine BaTiO3 Crystallites at Room Temperature,” Jap. J. Appl. Phys., 34, 6146 (1995)
Yen, F. S., Chang, C. T. and Chang, Y. H., “Characterization of Barium Titanyl Oxalate Tetrahydrate,” J. Am. Ceram. Soc., 73, 3422 (1990)
Yasumori, A., Ishizu, K., Hayashi, S., Okada, K., Preparation of a TiO2 based multiple layer thin film photocatalyst, J. Mater. Chem., 8, 521-2524 (1998).
Yoshihisa, O., Kazuhito, H., Fujishima, A., Kinetic of photocatalyic reactions under extremely low-intensity UV illumination on titanium dioxide thin film, J.Phys. Chem. A, 101, 8057-8062 (1997).
Zhang, Q., Gao, L., Guo, J., Effects of calcinations on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B: Envi., 26, 207-215 (2000).
Zeng, T. Y., Qiu, Y., Chen, L. H., Song, X., Microstrusture and phase evolution of TiO2 precursors prepared by peptization-hydrolysis method using polycarboxylic acid as peptizing agent, Mater. Chem. Phy., 56, 163-170 (1998).
Zima, T. M., Karakchiev, L. G., Lyakhov, N. Z., Syhthesis and physicochemical properties of hydrated titanium dioxide sol, Colloid J., 4, 471-475 (1998).
盧明憲, 低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液, 碩士學位論文, 國立中央大學化學工程研究所, 2001年.
陳惠姿, 水熱法合成細顆粒鈦酸鋇, 碩士學位論文, 國立中央大學化學工程研究所, 2001年.
余文懷, 共沈法合成細顆粒鈦酸鋇, 碩士學位論文, 國立中央大學化學工程研究所, 2002年.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2003-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明