博碩士論文 90324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.85.214.0
姓名 黃士益(Shih-Yi Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究
(Preparation of Rice Husk Ash-Supported Copper Catalyst by Deposition-Precipitation )
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究★ 氧化鋯擔載奈米金觸媒之製備與應用研究
★ 氧化鋁擔載奈米金觸媒之製備與應用研究★ 稻殼灰分擔載銅觸媒之製備與應用研究
★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究
★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 擔載銅觸媒和金觸媒之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本研究以稻殼為起始原料,經過水洗、酸洗、熱解及碳燒等前處理方法,製成稻殼灰分,並以其為擔體,利用沈澱固著法製備成稻殼灰分擔體銅觸媒(簡稱為Cu/RHA觸媒),同時利用感應耦合電漿質譜儀(ICP-MS)、元素分析儀(EA)、感應耦合電漿原子放射光譜儀(ICP-AES)、氮吸附法、X射線繞射儀(XRD)、熱重分析儀(TGA)、程式升溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)及掃描式電子顯微鏡(SEM)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,並利用乙醇脫氫反應作為催化活性的測試,藉以評估稻殼灰分做為觸媒擔體的可行性,
在稻殼灰分的組成分析方面,從分析結果得知:二氧化矽的純度達99%,其晶態屬於非晶型的二氧化矽,氮吸附分析結果指出其BET比表面積約為153m2/g。而在稻殼灰分擔體銅觸媒(Cu/RHA)方面,從分析結果得知:沈澱固著乾燥後所形成的觸媒前趨物為一種類似孔雀(chrysocolla-like)的層狀矽酸銅(copper hydrosilicate)結構,而矽酸銅熱分解溫度至少要673K,且層狀矽酸銅在高溫下鍛燒會分解成高表面積的網狀結構。由氮吸附結果指出,鍛燒後的Cu/RHA觸媒,其BET比表面積隨銅金屬載量增加而增加。從TPR圖譜可看出,Cu/RHA觸媒的還原溫度隨銅金屬載量增加而降低。從N2O分解吸附結果可知,Cu/RHA觸媒的分散度隨銅金屬載量增加而降低,但銅平均粒徑隨銅金屬載量增加而變大。從XRD圖譜也可看出銅粒徑有增加的趨勢。隨著金屬載量的增加,將有助於觸媒表面活性積數目的增加,然而過高的載量,會造成銅晶粒變大,整體對乙醇的吸附能力便弱,將造成活性下降。鍛燒的條件會影響觸媒活性,最佳的鍛燒溫度為673k。最佳的還原溫度為573k,最佳的還原時間1hr。 19.8wt.% Cu/RHA觸媒在548K下進行乙醇脫氫反應,能發揮最佳的活性,但隨著反應的進行因產生積碳現象而使活性衰退,一直到130分鐘才趨於穩定。比較稻殼灰分與氧化矽膠的分析結果,稻殼灰分確實有異於氧化矽膠的擔體性質存在,不僅能負載較多的銅活性金屬,也可使負載於表面的銅金屬有較高的金屬表面積,而且分散性佳,應用於催化反應時也較不易積碳,有較佳的活性表現。
摘要(英) Abstract
In this work, rice husk ash (RHA) was used as a catalyst support. RHA-supported copper catalysts (Cu/RHA) were prepared by the deposition-precipitation method. Characterization of the RHA-supported copper catalysts (Cu/RHA) indicates that the formation of the copper hydrosilicate with structural properties similar to the mineral chrysocolla. The thermal decomposition of the copper hydrosilicate starts above 673K. The specific surface area of the calcinated catalysts increases with increasing the copper loading. The dispersion of copper catalysts decreases with increasing copper loading. Furthermore, the mean size of copper crystallites increases with an increase in copper loading.
RHA supported copper catalysts was tested by the dehydrogenation of ethanol at 473-548K. The results indicate that the optimal preparations and operating conditions are 19.8wt.% in copper loading, 673K in calcination temperature, 573K in reduction temperature, 1hr in reduction time and 548K in reaction temperature.
Moreover, copper catalysts supported on RHA display higher catalytic activity than those supported on silica gel, as revealed by the test of ethanol dehydrogenation. Thus, RHA is found to be preferable over silica gel as a support.
關鍵字(中) ★ 稻殼灰分
★ 擔體銅觸媒
★ 沉澱固著
關鍵字(英) ★ copper catalyst
★ deposition-percipitation
★ rice husk ash
論文目次 目錄
內容 頁數
中文摘要 ……………………………………..…………………… Ⅰ
英文摘要 ……………………………………..…………………… Ⅲ
目錄 ………………………………………..………………… Ⅳ
圖索引 …………………………………………..……………… Ⅶ
表索引 …………………………………………….……………. XII
第一章 緒論……………………….……………………. 1
1.1 研究背景與動機…………….….……………………… 1
1.2 研究內容與本論文的架構..…………………………… 6
第二章 文獻回顧……………………………………….. 8
2.1 稻殼的組成與性質……………………….……………. 8
2.2 稻殼灰分擔體的製備…………………….……………. 12
2.2-1 稻殼的酸洗…………………………………………... 12
2.2-2 稻殼的熱解…………………………………………... 13
2.3 沈澱固著法製備擔體銅觸媒……….…………………. 14
2.4 鍛燒與還原程序…………………….…………………. 16
2.4-1 鍛燒程序……………………………………………... 16
2.4-2 還原程序……………………………………………... 18
2.5 擔體效應…………………………….…………………. 18
2.6 銅金屬表面積的測定……………….…………………. 19
2.7 乙醇脫氫反應…………………………………………. 20
第 三章 實驗方法與裝置……………………………….. 23
3.1 稻殼灰分擔體的製備……………….…………………. 23
3.1-1 水洗程序……………………………………………... 23
3.1-2 酸洗程序……………………………………………... 23
3.1-3 熱解程序……………………………………………... 24
3.1-4 碳燒程序……………………………………………... 26
3.2 擔體銅觸媒的製備……………………………………. 29
3.2-1 觸媒製備程序………………………………………... 29
3.2-2 觸媒代號說明………………………………………... 31
3.3 稻殼灰分擔體與擔體銅觸媒的鑑定分析….……….. 31
3.3-1 感應耦合電漿質譜儀(ICP-MS)及感應耦合電漿原子放射光譜儀(ICP-AES)分析……..…………………... 32
3.3-2 元素分析(EA)………………………………………... 33
3.3-3 BET比表面積、孔隙體積及孔徑大小分佈的分析… 33
3.3-4 X-射線繞射分析(XRD)……………..………………... 34
3.3-5 熱重分析(TGA)……………………..………………... 36
3.3-6 程式升溫還原(TPR)………………..………………... 36
3.3-7 銅金屬表面積的量測…….………..………………... 39
3.3-8 掃描式電子顯微鏡(SEM)……………………….…... 41
3.4 觸媒的活性測試 乙醇脫氫反應…………………. 42
3.5 3.5-1 3.5-2 實驗流程與操作變數………………………………….稻殼灰分(RHA)的製備………………………………..稻殼灰分擔體銅觸媒………………………………….. 444444
3.6 3.6-1 3.6-2 3.6-3 數據的計算與實例…………………………………….擔體銅觸媒理論載量的定義及計算………………….銅的分散度、比金屬表面積及晶粒的定義與計算….轉化率的定義與計算…………………………………. 46464649
3.7 3.7-1 3.7-2 3.7-3 藥品、氣體及儀器設備……………………………藥品…………………………………………………….氣體……………………………………………………..儀器設備……………………………………………….. 50505252
第四章 結果與討論…………………………………….. 54
4.1 稻殼灰分組成的分析…………………………………. 54
4.2 Cu/RHA觸媒製備條件的探討……………………….. 57
4.2-1 配製濃度對銅金屬載量的影響…………….…………. 57
4.2-2 鍛燒條件的選擇……………………………………….. 60
4.3 Cu/RHA觸媒的特性分析…………………………….. 62
4.3-1 觸媒總表面積的測定結果……………………………. 62
4.3-2 銅金屬表面積的測定結果…….………………………. 64
4.3-3 X-射線繞射(XRD)的分析結果………….……………. 69
4.3-4 程式升溫還原(TPR)的分析結果……………………… 73
4.4 Cu/RHA觸媒的化性分析……………………………. 76
4.4-14.4-24.4-3 Cu/RHA觸媒的金屬載量對活性的影響…………….Cu/RHA觸媒的鍛燒溫度對活性的影響……………..Cu/RHA觸媒的還原條件對活性的影響……………. 767879
4.4-44.4-5 反應溫度對乙醇脫氫反應的影響……………………..反應時間對Cu/RHA之影響…………………………. 8383
4.4-6 稻殼灰分與商用氧化矽膠分析結果的比較………... 88
第五章 結論…………………………………………….. 96
參考文獻 …………………………………………………………. 98
圖索引
Page
Fig. 2-1 The proposed structure for chrysocolla……………..…… 17
Fig. 3-1 Schematic diagram of the apparatus for the acid leaching of rice husk……………………………….……………… 25
Fig. 3-2 Schematic diagram of the apparatus for pyrolyzed of leached rice husk…………………………….………… 27
Fig. 3-3 Apparatus for removing carbon from pyrolyzed rice husk……………………………………………………. 28
Fig. 3-4 Apparatus for catalyst calcination………..……………. 30
Fig. 3-5 Schematic diagram of temperature-programmed reduction system………...…………………………….. 38
Fig. 3-6Fig. 3-7 Schematic diagram of nitrous oxide dissociative adsorption system…..…………………………………..Schematic diagram of reaction system………………….. 4043
Fig. 3-8 Experimental flow chart for preparation of rice husk ash……………………………………………….…….. 45
Fig. 3-9 Experimental flow chart for preparation of copper- containing catalyst on rice husk ash…………………… 47
Fig.3-10Fig. 4-1 The profile of products chromatograph qualitive analysis…………………………………………………XRD spectrum of rice husk ash………………..……… 5156
Fig. 4-2 Effect of copper ion concentration on copper loading of Cu/RHA………………….……………………………. 59
Fig. 4-3Fig.4-4 Thermal gravimetric analysis (TGA) diagram of 40.3wt/% Cu/RHA catalyst precursor after drying……SEM image of various Cu/RHA catalysts after calcination at 673K (a)8.51wt.%;(b) 19.8wt.% ; (c)32.1wt.%.;(d) 40.3wt.%…………………………… 6165
Fig. 4-5 Standard XRD speactra of CuO…………………………. 70
Fig. 4-6 XRD spectra of CuO unsupported and Cu/RHA catalyst precursors with different copper ion concentration. ( precipitation time, 24h ; calcination temperature, 673K ; calcination time, 4h )(a) CuO unsupported ; (b) 8.51wt.% ; (c) 12.9wt.% ;(d) 19.8wt.% ; (e)32.1wt.%.;(f) 40.3wt.%……….…… 71
Fig. 4-7 XRD spectra of unsupported CuO and 8.51wt.% Cu/RHA catalyst precursors with different calcination temperature.(a)573K ; (b) 673K ;(c)773K(precipitation time, 24h;calcination time, 4h)………………………… 72
Fig. 4-8 TPR profiles of unsupported CuO and Cu/RHA catalysts with different copper loading.(a) unsupported CuO; (b) 8.51wt.% ; (c) 12.9wt.% ; (d) 19.8wt.% ; (e) 32.1wt.%.;(f)40.3 wt.% ( ramp rate, 10K/min ; precipitation time, 24h ; calcination temperature, 673K ; calcination time, 4h )………………. 74
Fig.4-9 TPR profiles of CuO unsupported and 8.51wt.% Cu/RHA catalyst precursors with different calcination temperature. ( precipitation time, 24h ; calcination time, 4h )(a)573K ; (b) 673K ; (c) 773K………………………….. 75
Fig4-10 Effect of copper loading on ethanol conversion for ethanol dehydrogenation over Cu/RHA catalysts (calcination temperature, 673K;calcination time, 4hr;reaction tempure, 548K;reaction time, 40 min.)………. 77
Fig.4-11 Effect of calcination temperature on ethanol conversion for ethanol dehydrogenation over 8.51wt.% Cu/RHA catalyst (calcination time,4 hr;reaction tempure,548K;reaction time,40 min.)…………………………………… 80
Fig.4-12 Effect of reduction temperature on ethanol conversion for ethanol dehydrogenation over 19.8wt.%Cu/RHA catalysts(calcination temperature ,673K;calcinations time 4 hr;reaction tempure,548K;reaction time,40 min.). 81
Fig. 4-13 Effect of reduction time on ethanol conversion for ethanol dehydrogenation over 19.8wt.% Cu/RHA catalysts(calcination temperature ,673K;calcinations time 4 hr;reaction tempure,548K;reaction time,40 min.) 83
Fig. 4-14 The profile of products chromatograph qualitative analysis. (copper loading 40.3wt.%;reaction temperature 573K)……………………………………………………. 84
Fig. 4-15 Effect of reaction temrerature on ethanol conversion for ethanol dehydrogenation over 19.8wt.% Cu/RHA catalysts (calcination temperature, 673K;calcination time, 4 hr;reduction tempure,578K;reaction time, 40 min.)……………………………………………………… 85
Fig. 4-16 Effect of reaction time on ethanol conversion for ethanol dehydrogenation over 19.8wt.% Cu/RHA catalysts (calcination temperature,673K;calcination time 4 hr;reaction tempure,548K)…………………………………. 87
Fig. 4-17 XRD spectrum of rice husk ash and silica gel…………… 90
Fig. 4-18 Comparison of on ethanol conversion for ethanol dehydrogenation over Cu/RHA and Cu/SiO2 catalysts(a)Cu/RHA (b)Cu/SiO2 (reaction temperature,548K)……. 95
表索引
Page
Table 1-1 The utilization of rice husk……………………...…. 4
Table 2-1 Organic constituent of rice husk. …………………... 9
Table 2-2 Chemical analysis of raw rice husk……………… 10
Table 2-3 Average composition of rice husk ash……………… 11
Table 4-1 The ICP-MS analysis and element analysis of rice husk ash…………………………………………… 55
Table 4-2 The ICP-AES analysis of Cu/RHA catalysts with different prepared condition……………………… 58
Table 4-3 Nitrogen adsorption analysis of Cu/RHA catalysts with different copper ion concentration……..……... 63
Table 4-4 The dissociative adsorption of nitrous oxide analysis of Cu/RHA catalysts with different copper ion concentration. ( precipitation time, 24h ; calcination temperature, 673K ; calcination time, 4h ; reduction temperature, 673K )……………………………...… 66
Table 4-5 The dissociative adsorption of nitrous oxide analysis of 8.51wt% Cu/RHA catalysts with different calcination temperature. ( precipitation time, 24h ; calcination time, 4h ; reduction temperature, 673K )….…………………………………………… 68
Table 4-6 Comparison of physical properties of rice husk ash and silica gel……………………………………….. 89
Table 4-7 Comparison of nitrogen adsorption analysis of Cu/RHA and Cu/SiO2……………………………. 92
Table 4-8 Comparison of nitrous oxide analysis of Cu/RHA and Cu/SiO2 catalysts……………………………. 93
參考文獻 參考文獻
Acharya, H. N., H. D. Banerjee, and N. C. Roy, Indian Patent, No. 158, 579 (1986).
Ai, M., “Dehydrogenation of Methanol to Methyl Formate over Copper-Based Catalysts” , Appl. Catal., 11, 259 (1984).
Amick, J. A. ,“Purification of Rice Hulls As a Source of Solar Grade Silicon for Solar-Cells” , J. Electrochem. Soc., 129, 864 (1982).
Boar, P. L. and L. K. Ingram , “The Comprehensive Analysis of Coal Ash and Silicate Rocks by Atomic-Absorption Spectrophotometry by a Fusion Technique” , Analyst., 95, 124 (1970).
Bond, G. C., and S. N. Namijo, “An Improved Procedure for Estimating the Metal Surface Area of Supported Copper Catalysts” , J. Catal., 118, 507 (1989).
Bond, G. C., S. N. Namijo, and J. S. Wakeman, “Thermal Analysis of Catalyst Precursors Part 2. Influence of Support and Metal Precursors on the Reducibility of Copper Catalysts” , J. Mol. Catal., 64, 305 (1991).
Brands, D. S., E. K. Poels, and A. Bliek, “Ester Hydrogenolysis over Promoted Cu/SiO2 Catalysts” , Appl. Catal. A, 184, 279 (1999).
Burton, R. S. , R. C. Richard, and S. Alpert, “Municipal Solid Waste Prolysis” , AIChE System, 70, 116 (1974).
Carter, J. L., J. A. Cusumano, and J. H. Sinfelt, J. Phy. Chem., 70, 2257 (1966).
Cesar, D. V., C. A. Peréz, V. M. M. Salim, and M. Schmal, “Stability and Selectivity of Bimetallic Cu-Co/SiO2 Catalysts for Cyclohexanol Dehydrogenation” , Appl. Catal. A, 176, 205 (1999).
Chakraverty, A. , P. Mishra, and H. D. Banerjee, “Investigation of Thermal Decomposition of Rice Husk” , Thermochimica Acta, 94, 267 (1985).
Chakraverty, A. , P. Mishra, and H. D. Banerjee, “Investigation of Production of Pure Amorphous White Silica” , J. Master. Sci., 23, 21 (1988).
Chambers, A., S. D. Jackson, D. Stirling, and G. Webb, “Selective Hydrogenation of Cinnamaldehyde over Supported Copper Catalysts” , J. Catal., 168, 301 (1997).
Chang, F. W. , T. J. Hsiao, S. W. Chang, and J. J. Lo, “Nickel Supported on Rice Husk Ash-Activity and Selectivity in CO2 Methanation” , Appl. Catal. A, 164, 225 (1997).
Chang, F. W. , T. J. Hsiao, and J. D. Shih, “Hydrogenation of CO2 over a Rice Husk Ash Supported Nickel Catalyst by Deposition- Precipitation” , Ind. Eng. Chem. Res., 37, 3838 (1998).
Chang, F. W., M. T. Tsay, and S. P. Liang, “Hydrogenation of CO2 over Nickel Catalysts Supported on Rice Husk Ash Prepared by Ion Exchange” , Appl. Catal. A, 209, 217 (2001).
Chang, F. W., M. T. Tsay, M. S. Kuo and C. M. Yang, “Characterization of Nickel Catalysts on RHA-Al2O3 Composite Oxides Prepared by Ion Exchange” , Appl. Catal. A, 226, 213 (2002a).
Chang, F. W., M. T. Tsay, and M. S. Kuo, “Effect of Thermal Treatments on Catalyst Reducibility and Activity in Nickel Supported on RHA-Al2O3 Systems” ,Thermochim. Acta, 386, 161 (2002b).
Chen, H. W., J. M. White, and J. G. Ekerdt, “Electronic Effect of Supports on Copper Catalysts” , J. Catal., 99, 293 (1986).
Chen, J. M. and F. W. Chang, “Rice Husk as a Source of High Purity Carbon/Silica to Producing Silicon Tetrachloride” , Proc. Natl. Sci. Counc., 15, 412 (1991a).
Chen, J. M. and F. W. Chang, “The Chlorination Kinetics of Rice Husk” , Ind. Eng. Chem. Res., 30, 2214 (1991b).
de Jong, K. P., J. W. Geus, and J. Joziasse, “An Infrared Spectroscopic Study of the Adsorption of Carbon Monoxide on Silica-Supported Copper Oxide” , J. Catal., 65, 437 (1980).
Evans, J. W., M. S. Winwright, A. J. Bridgewater, and D. J. Young, “On the Determination of Copper Surface Area by Reaction with Nitrous Oxide” , Appl. Catal., 7, 75 (1983).
Franckerts, J., and G. F. Froment, “Kinetic Study of the Dehydrogenation of Ethanol” , Chem. Eng. Sci., 19, 807 (1964).
Giamello, E., B. Fubini, P. Lauro, and A. Bossi, J. Catal., 18, 108 (1970).
Gil. A., A. Diaz., L. M. Gandia, and M. Montes, “Influence of the Preparation Method and the Nature of the Support on the Stability of Nickel Catalysts” , Appl. Catal. A, 109, 167 (1994).
Hindustan Lever Ltd. , Indian Patent , No.147090 (1979).
Houston, D. F. , “Rice Hulls” , Rice Chemistry and technology , Chapter 12 , Houston, D. F., Eds., American of Association of Cereal Chemistry, St. Paul. Minnessota (1972).
Ibrahim, D. M. and S. A. EL-Hemaly, “Thermal Treatment of Rice-Husk Ash : Effect of Time Firing on Pore Structure and Crystallite Size” , Thermochimica Acta, 37, 347 (1980).
Jackson, S. D., F. J. Robertson, and J. Willis, “A Study of Copper/silica Catalysts: Reduction, Adsorption and Reaction” , J. Mol. Catal., 63, 255 (1990).
Jeon S. G., Chung J. S. “Preperation and Characterization of Silica-Supported Copper Catalysts for the Dehydrogenation of Cyclehexanol to Cyclohxanone” , Appl. Catal A., 115, 29 (1994)
Klbag, S. S. , P. K. Basu, and N. V. Bringi, Indian Patent , No.146570 (1979).
Kohler, M. A., H. E. Curry-Hyde, A. E. Hughes, B. A. Sexton, and N. W. Cant, “The Structure of Cu/SiO2 Catalysts Prepared by the Ion- Exchange Technique” , J. Catal., 108, 323 (1987).
Liou, T. H. and F. W. Chang, “The Nitridation Kinetics of Pyrolyzed Rice Husk” , Ind. Eng. Chem. Res., 35, 3375 (1996).
Liou, T. H., F. W. Chang, and J. J. Lo, “Pyrolysis Kinetics of Acid-Leached Rice Husk” , Ind. Eng. Chem. Res. , 36, 568 (1997).
Longgaback, J. R. and F. Banner, Industrial and Laboratory Pyrolyusis, Chap. 27, 476 (1976).
Marchi, A. J., J. L. G. Fierro, J. Santamaría, and A. Monzón, “Dehydrogenation of Isopropylic Alcohol on Cu/SiO2 Catalyst: a Study of the Activity Evolution and Reactivation of the Catalyst” , Appl. Catal. A, 142, 375 (1996).
Mile, B. D. Stirling, M. A. Zammitt, A. Lovell, and M. Webb,”The Location of Nickel Oxide and Nickel in Silica-supported Catalysts:Two Forms of “NiO” and the assignment of Temperature Programmed Reduction Profiles” , J. Catal., 114, 217 (1988).
Patel, M. , A. Karera, and P. Prasanna, “Effect of Thermal and Chemical Treatment on Carbon and Silica Contents in Rice Husk” , J. Master. Sci., 20, 4387 (1987).
Richardson, J. T. and R. J. Dubus, ”Crystallite Size Distributions of Sintered Nickel Catalysts” , J. Catal., 57, 417 (1979).
Riverors, H. and C. Garz, “Rice Husks as a Source of High Purity Silica”, J.Master. Sci., 22, 4665 (1987).
Sato, S., R. Takahashi, T. Sodesawa, K. I. Yuma, and Y. Obata, “Distinction between Surface and Bulk Oxidation of Cu through N2O Decomposition” , J. Catal., 196, 195 (2000).
Sengupta, G., D. K. Gupta, M. L. Kundu, and S. P. Sen, J. Catal., 67, 223 (1983).
Takezawa, N., H. Kobayashi, Y. Kamegai, and M. Shimokawabe, “Characterization of Copper/Silica Catalysts in Reduced States” , Appl. Catal., 3, 381 (1982).
Tsay, M. T. and F. W. Chang, “Characterization of Rice Husk Ash-Supported Nickel Catalysts Prepared by Ion Exchange” , Appl. Catal. A, 203, 15 (2000).
Tsay, M. T. and F. W. Chang, “Characterization and Reactivity of RHA-Al2O3 Composite Oxides Supported Nickel Catalysts” , Catal. Commun., 2, 233 (2001).
Toupance, T., M. Kermarec, and C. Louis, “Metal Particles Size in Silica-Supported Copper Catalysts. Influence Condition of Preperation and of Thermal Pretreatments”,J. Phys. Chem.B, 104, 965(2000)
Tu, Y. J., Y. W. Chen, and C. Li, “Characterization of Unsupported Copper-Chromium Catalysts for Ethanol Dehydrogenation” , J. Mol. Catal., 89, 179 (1994).
van den Oetelaar, L. C. A., A. Partridge, P. J. A. Stapel, C. F. J. Flipse, and H. H. Brongersma, “A Surface Science Study of Model Catalysts. 1. Quantitative Surface Analysis of Wet-Chemically Prepared Cu/SiO2 Model Catalysts” , J. Phys. Chem. B, 102, 9532 (1998).
van der Grift, C. J. G., A. Mulder and J. W. Geus, “Characterization of Silica-Supported Copper Catalysts by Means of Temperature- Programmed Reduction”, Appl. Catal., 60, 181 (1990a).
van der Grift, C. J. G., A. F. H. Wielers, A. Mulder, and J. W. Geus, “The Reduction Behaviour of Silica-Supported Copper Catalysts Prepared by Deposition-Precipitation” , Thermochimica Acta, 171, 95 (1990b).
van der Grift, C. J. G., P. A. Elberse, A. Mulder, and J. W. Geus, “Preparation of Silica-Supported Copper Catalysts by means of Deposition-Precipitation” , Appl. Catal., 59, 275 (1990c).
van der Grift, C. J. G., A. F. H. Wielers, B. P. J. Joghi, J. Van Beijnum, M. de Boer, M. Versluijs-Helder, and J. W. Geus, “Effect of the Reduction Treatment on the Structure and Reactivity of Silica-Supported Copper Particles” , J. Catal., 131, 178 (1991).
van Dillen, A. J., G. W. Geus, L. A. M. Hermans, and J. van der Meijden, in “Proceedings, 6th International Congress on Catalysis, London, 1976” , Chemical Society, London, 677 (1977).
van Oosterwijck-Gastuche, M. C., and Ch. Gregoire, Mineral. Soc. Jpn. Spec., 196 (1971).
Yoshida, S. Y. Onishi, and K. Kitagishi, “Chemical Forms, Mobility and Depostion of Silicon in Rice Plant”, Soil Science and Plant Nutrition, 8, 15 (1962).
吳榮宗, “工業觸媒概論” 增訂版, 興國出版社 (1980).
李秉傑, 邱宏明, 王亦凱, 合譯 “非均勻系催化原理與應用” , 渤海堂文化事業有限公司 (1993) .
林文雄, 鄒岳樺, 張新福, “無電鍍銅觸媒之銅表面積及對醇類之脫氫反應之影響” , 技術學刊, 12, 463 (1997).
姚品全, “淺談銅觸媒” , 觸媒與製程, 8(2), 47 (2000).
李昆展, “以稻殼灰分初濕含浸製備擔體銅觸媒之研究” , 國立中央大學化學工程研究所碩士論文 (2001).
謝銘仲, “以稻殼灰分沉澱固著製備擔體銅觸媒特性之研究” , 國立中央大學化學工程研究所碩士論文 (2002).
指導教授 張奉文(Feng-Wen Chang) 審核日期 2003-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明