博碩士論文 90324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.147.73.35
姓名 楊浩忠(Hao-Zhong Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究
(LiCoO2 Synthesized by a TEA-Sucrose Combustion Method as a Cathode Material in Lithium Batteries)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究
★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究
★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討以燃燒合成法製備LiCoO2陰極材料之製程研究,首先利用XRD鑑定各製程所得材料之結構變化,SEM、TEM及BET鑑定合成材料之表面型態、顆粒粒徑與表面積,接著測試各材料之電池性能,進而求出最佳製程條件。其合成變因有錯合劑與燃料比例、煆燒溫度、時間及鋰計量等。並以循環伏安法測試材料氧化還原行為。
首先以硝酸鋰及硝酸鈷為起始物,以三乙醇氨 (Triethanolamine)為錯合劑,蔗糖(Sucrose)為燃料,以1比1、1比2、1比4、1比8及1比16等不同三乙醇氨與蔗糖比例,並於800℃/10h之煆燒條件,探討最佳錯合劑與燃料之比例。將所得最佳錯合劑與燃料之比例之材料改變600及700℃二種不同煆燒溫度,以及不同煆燒時間2.5及20小時,在空氣氣氛下進行煆燒,藉以求得最佳製程條件。由XRD分析圖譜中可發現在煆燒溫度600℃以上之條件均可合成出純相產物。本實驗最佳製程條件為三乙醇氨與蔗糖比例為1比8,煆燒溫度800 ℃,煆燒時間10小時。其合成材料於充放電截止電壓分別為4.3及3.0伏特時,第一次與第五次放電電容量分別為156與153 mAh/g,電荷維持率為98﹪;當充電電壓升至4.4伏特時,第六次與第十次放電電容量分別為167與165 mAh/g,電荷維持率為98﹪。
為避免高溫熱處理下造成鋰的揮發而造成電容量損失,因此擬藉助加入過量鋰金屬,以改善此一現象。吾人針對x =1.05、1.10及1.15進行研究。當鋰計量x=1.05、1.10以及1.15所合成之LiCoO2陰極材料於充放電速率0.1C,充放電截止電壓分別為4.3及3.0伏特時,第一次放電電容量分別為157、154及155 mAh/g。第六次充電電壓提升至4.4伏特時,其放電電容量分別為166、165及166 mAh/g,且於第十次降為162、163及164 mAh/g。在長循環測試下,各過量鋰計量數之LiCoO2材料其電池性能相差不多,其循環次數約在70次左右,而放電電容量約在133mAh/g。
摘要(英) This dissertation covers the synthesis and lithium-intercalating properties of LiCoO2 prepared by a combustion process with triethanolamine (TEA) as a complexant and sucrose as a fuel-cum-complexing agent. The synthesis parameters – TEA: sucrose mole ratio, and temperature and duration of calcination – as well as lithium stoichiometry were optimized in order to obtain products with the best electrochemical activity. Structural properties of the products were investigated by x-ray diffraction, surface morphology by scanning electron microscopy and transmission electron microscopy, and surface area by the BET method. Lithium intercalation properties were studied by galvanostatic charge-discharge studies at different rates and voltage windows. The various redox regions and phase changes occurring during the charge-discharge processes were studied by cyclic voltammetry.
The precursors for the synthesis of LiCoO2 were metal nitrates dissolved in an aqueous solution of TEA and sucrose in various mole ratios: 1:1, 1:2, 1:4, 1:8 and 1:16. Although phase-pure products could be obtained by a 10-h calcination at 600°C, the crystallinity of the product improved with the duration and temperature of calcination. The optimal synthesis conditions were found to be a 10-h calcination at 800°C. The electrochemical properties of the products were correlated with their surface area and R-parameter. Sucrose was first hydrolyzed to glucose and fructose, and subsequently oxidized to gluconic or polyhydroxy acids, which coordinated with the cations and cross-linked with the TEA. TEA complexes with cations and immobilizes them in a carbonaceous matrix formed from sucrose. Thus, upon decomposition of the precursor, the cations find themselves dispersed uniformly in a carbonaceous matrix. Sucrose also acts as a fuel, providing the energy for product formation and sintering. However, a large amount of sucrose in the precursor can also reduce the partial pressure of oxygen in the reaction zone, adversely affecting the product characteristics. At the same time, at low concentrations of TEA, less chelation of the cations means less distribution. The product formation is discussed in terms of the TEA:sucrose ratios.
At a 0.1 C rate between 3.0 and 4.3 V, the 10-h 800°C product gave a first-cycle discharge capacity of 156 mAh/g, which faded to 153 mAh/g in fifth cycle, with charge retention of 98%. A subsequent cycling between 3.0 and 4.4 V at a 0.1 C rate gave a discharge capacity of 167 mAh/g in the sixth cycle, fading to 165 mAh/g in tenth cycle, registering a charge retention of 98%. The superior performance of the material compared to the commercial LiCoO2 sample was also demonstrated. For example, at a 0.2 C rate between 3.0 and 4.2 V, not only was the initial capacity of our material higher (137 mAh/g) than that of the commercial sample (132 mAh/g), its cyclability was also higher: 100 cycles versus 68 for the commercial product for an 80% charge-retention cut-off value.
Lithium-rich LixCoO2 (where x = 1.05~1.15) phases were also studied. The excess lithium stoichiometric phases were synthesized to compensate for any lithium that might be lost during heat treatment. The first-cycle discharge capacities of these products were 157, 154 and 155 mAh/g, respectively, for x = 1.05, 1.10 and 1.15 at a charge-discharge rate of 0.1 C between 3.0 and 4.3 V. When the voltage window was 3.0~4.4 V in the sixth cycle, the corresponding capacities were 166, 165 and 166 mAh/g, fading to 162, 163 and 164 mAh/g in the tenth cycle.
關鍵字(中) ★ 鋰鈷氧
★ 燃燒合成法
★ 陰極材料
★ 蔗糖
★ 三乙醇氨
★ 鋰離子電池
關鍵字(英) ★ Cathode Materials
★ Lithium ion battery
★ Sucrose
★ Triethanolamine
★ LiCoO2
★ Combustion symthesis
論文目次 摘要 I
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1. 簡介 1
1-2. 研究目的與大綱 5
第二章 文獻回顧 9
2-1. 傳統鋰鈷氧合成方法 9
1. 高溫固態法之製程特色與機制 9
2. 溶凝膠法之製程特色與機制 10
3. 共沈澱法之製程特色與機制 11
2-2. 以燃燒法製備鋰鈷氧材料之起因與緣由 12
2-3. 燃燒法之歷史、種類、應用及燃燒產物之緻密化 14
1. 簡單燃燒合反應系統 15
1.1 簡單SHS反應系統 15
1.2 熱熔接型式反應系統 16
1.3 錯合氧化物燃燒合成法 17
2. 其他種類之燃燒合成製程 18
2.1 固態置換法(Solid-state Metathesis, SSM) 18
2.2 火焰合成法(Flame Synthesis) 18
2.3 具有氧化還原作用之化合物與混合物之燃燒合成法(Combustion
Synthesis of Oxide Materials Using Redox Compounds and
Mixtures) 20
2.4 結合燃燒合成與氣體輸送(Coupled Combustion Synthesis and
Vapor Transport) 30
2.5 薄膜製造與塗佈改質技術(Thin-films and Coatings) 30
3. 燃燒合成材料緻密化 30
2-4 錯合劑種類與錯合反應之反應機制 31
第三章 實驗方法 36
3-1. 實驗藥品器材 36
3-2. 實驗儀器 37
3-3. 實驗步驟 38
1. LiCoO2陰極材料合成 38
2. 材料鑑定分析 43
2.1 X光繞射(XRD) 43
2.2 掃瞄式電子顯微鏡(SEM) 43
2.3 感應耦合電漿質譜分析儀(ICP-MS) 43
2.4 表面積測試(BET) 44
2.5 顆粒粒徑測試(TEM) 45
3. 材料電化學特性分析 45
3.1 電池性能測試 45
(1)陰極之極片製作 45
(2)硬幣型電池組裝 45
(3)電池性能測試方法步驟 45
3.2 慢速循環伏安分析(Slow Scan Cyclic Voltammetry) 48
(1) 實驗條件 48
(2) CV電極製作 48
第四章 結果與討論 49
1. 鑑定分析 49
1.1 XRD材料結構分析 49
1.2 SEM材料表面型態分析 55
(1)錯合劑與燃料比例變因 55
(2)煆燒溫度與時間變因 56
1.3 BET材料表面積鑑定 61
1.4 TEM顆粒粒徑測試 62
1.5 ICP-AES元素計量鑑定分析 63
(1)錯合劑與燃料比例變因 63
(2)煆燒溫度與時間變因 63
2. 電化學分析 64
2.1 電池性能測試 64
(1) 錯合劑與燃料比例變因 64
(2)煆燒溫度與時間變因 70
(3)鋰計量 75
(4)長循環測試 78
2.2 慢速循環伏安分析 82
第五章 結論 84
第六章 參考文獻 86
附錄:碩士論文研究兩年期間,有關研究成果所發表論文狀況說明 92
參考文獻 [1] S.G. Kang , S.Y. Kang, K.S. Ryu and S.H. Chang, Solid State Ionics, 120, 155, 1999.
[2] C. Y. Yao, T. H. Kao, C. H. Cheng, J. M. Chen and W. M. Hurng, J. Power
Source, 54, 491, 1995.
[3]陳俊宏, 碩士論文, “燃燒合成法氮化鋁基板材料研究”, 國立成功大學, 中華民國台灣(2001).
[4] W. D. Johnston, R. R. Heikes and D. Sestrich, J. Phys. Chem. Solids, 7, 1 (1958).
[5] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull, 15, 783 (1980).
[6] J.B. Goodenough, K. Mizushima, T. Takeda, Jpn. J. Appl. Phys.,19, 305 (1980).
[7] T. Nagaura, K. Tozawa, Progr. Batt. Solar Cells, 9, 209 (1990).
[8] J. Pierre and P. Ramos, J. Power Sources, 54, 120 (1995).
[9] M. Kakihana, J. Sol-Gel Science and Technology, 6, 7 (1996).
[10] Y. K. Sun, I. H. Oh, S. A. Hong, J. Mater. Sci., 31, 3617 (1996).
[11] G. T. K. Fey, K. S. Chen, B. J. Hwang, and Y. L. Lin, J. Power Sources, 68/2, 519 (1997).
[12] 袁正宇, 碩士論文, "鋰離子電池層狀及反尖晶石陰極材料溶膠-凝膠法製程研究", 國立中央大學, 中華民國臺灣 (1999).
[13] P. N. Kumta, D. Gallet. A. Waghray, G. E. Blomgren and M. P. Setter, J. Power Sources, 72, 91 (1998).
[14] Y. K. Sun, J. Power Sources, 83, 223, (1999).
[15]J. Kim, P. Fulmer, and A. Manthiram, Material Research Bulletin, 34, 571 (1999).
[16] R. Gover, M. Yonemura , A. Hirano, R. Kanno, Y. Kawamoto, C. Murphy, B. Mitchell and J. W. Richardson Jr., J. Power Sources, 81, 535 (1999).
[17] H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, and L. Chen, J. Power Sources, 68, 530 (1997).
[18] H. Yan, X. Huang, H. Li and L. Chan, Solid State Ionics, 113, 11 (1998).
[19] V. Subramanian, C.L. Chen, H.S. Chou, G.T.K. Fey, J. Mater. Chem., 11, 3348 (2001).
[20] C. K. Jorgensen, in Atoms and Molecules (Academic Press, London, 1962), p. 80.
[21] C. J. Brinker and G. W. Scherer, SOL-GEL SCIENCE-The Physics and Chemistry of Sol-Gel Processing, p.834.
[22] D.H. Kim, E.D. Jeong, S.P. Kim, Y.B. Shim, Bull. Korean Chem. Soc., 21, 1125 (2000).
[23] E.D. Jeong, M.S. Won, Y.B. Shim, J. Power Sources, 70, 70 (1998).
[24] M. Tabuchi, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, C. Masquelier, M. Yonemura, A. Hirano, R. Kanno, J. Mater. Chem., 9, 199 (1999).
[25] C.H. Lu, P.Y. Yeh, J. Mater. Chem., 10, 599 (2000) .
[26] T. Ogihara, T. Yanagawa, N. Ogata, K. Yoshida, Y. Mizuno, S. Yonezawa, M. Takashima, N. Nagata, K. Ogawa, Denki Kagaku, 61, 1339,(1993).
[27] G.T.K. Fey, R.F. Shiu, V. Subramanian, J.G. Chen, C.L. Chen, J. Power Sources, 103, 265 (2002).
[28] G.T.K. Fey, V. Subramanian, J.G. Chen, Electrochem. Commun., 3, 234 (2001).
[29] G.T.K. Fey, V. Subramanian, J.G. Chen, Mater. Lett., 52, 197 (2002).
[30] G.T.K. Fey, V. Subramanian, C.Z. Lu, Ionics, 7, 210 (2001).
[31] P. Barboux, J.M. Tarascon, F.K. Shokoohi, J. Solid State Chem., 94, 185 (1991).
[32] P.-J. Cho, E.-D. Jeong, Y.-B.Shim, Bull. Korean Chem. Soc., 19, 39 (1998).
[33] M. Yoshio, H. Tanaka, K. Tominaga, H. Noguchi, J. Power Sources, 40, 347 (1992).
[34] Z.S. Peng, .C.R. Wan, C.Y. Jiang, J. Power Sources, 72, 215 (1998).
[35] S. Rodrigues, N. Munichandraiah, A.K. Shukla, J. Power Sources, 102, 322 (2001).
[36] R.F. Shiu, Master’s Degree Dissertation, National Central University, Taiwan,
R.O.C. (2000).
[37] G.T.K. Fey, V. Subramanian, C.Z. Lu, Solid State Ionics (accepted for
publication).
[38] G.T.K. Fey, J. G. Chen, V. Subramanian, D. L. Huang, T. Akai, H. Masui, Mater. Chem. Phys., 79, 21, 2003.
[39] C. Julien, M. A. C-Lopez, T. Mohan, S. Chitra, P. Kalyani and S. Gopukumar,
Solid State Ionics, 135, 241 (2000).
[40] A. Sen, P. Pramanik, Mater. Lett., 50, 287 (2001).
[41] H. Singh Nalwa, (Ed.) Handbook of Nanostructured materials and
Nanotechnology, Vol. I: Synthesis and Processing, Academic Press, New York, 198.
[42] G. Beaucage, J.E. Mark, G.T. Burns, (Eds.), Nanostructured Powders and their Industrial Applications, Materials Research Symposia Proceedings, California, USA, 1998.
[43] A. Adak, A. Pathak, P. Pramanik, J. Mater. Sci. Lett., 17,559 (1998).
[44] A.J. Fanelli, J. V. Burlew, J. Am. Ceram. Soc., 69, C-174 (1998).
[45] R.N. Das, A. Pathak, P. Pramanik, J. Am. Ceram. Soc., 81, 3357 (1998).
[46] N. Yamazoe, Sens. Actuators, B 5, 7 (1991).
[47] D.S. Ginley, C. Bright, Mater. Res. Soc. Bull., 25, 15 (2000).
[48] H.Z. Zhang, Solid State Commun., 109, 677 (1999).
[49] H.J. Dai, Nature, 375, 769 (1995).
[50] Z.W. Pan, Adv. Mater., 12, 1186 (2000).
[51] Z.L. Wang, App. Phys. Lett., 77, 3349 (2000).
[52] W. Han, S. Fan, Q. Li, Y. Hu, Science, 277, 1287 (1997).
[53] X.F. Duan, C.M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
[54] N. Treuil, C. Labrugere, M. Mentrier, J. Portier, G. Campet, A. Deshayes, J.C. Frison, S.J. Hwang, S.W. Song, J.H. Choy, J. Phys. Chem. B., 103, 2100 (1999).
[55] F. Zhang, S. Passerini, B.B. Owens, W.H. Smyrl, Electrochem. Solid-State Lett., 4, A221 (2001).
[56] S. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature, 407, 496 (2000).
[57] S. H. Kang, J.B. Goodenough, L.K. Rabenberg, Electrochem. Solid-State Lett., 4, A49 (2001).
[58] P. Lucas, C.A. Angel, J. Electrochem. Soc., 147, 4459 (2000).
[59] J. Kim, A. Manthiram, Electrochem. Solid-State Lett., 1, 207 (1998).
[60] N. Li and C. R. Martin, J. Electrochem. Soc., 148, 164 (2001).
[61] N. Li, C. R. Martin and B. Scrosati, Electrochem. Solid State Lett., 3, 316 (2000).
[62] C. R. Martin N. Li and B. Scrosati, J. Power Sources, 97, 240 (2001).
[63] M. J. Parent, S. Passerini, B. B. Owens and W. H. Smyrl, J. Electrochem. Soc., 146, 1346 (1999).
[64] N. Li, C. J. Patrissi and C. R. Martin, J. Electrochem. Soc., 147, 2044 (2000).
[65] C. J. Patrissi and C. R. Martin, J. Electrochem., 146, 3176 (1999).
[66] C. J. Patrissi and C. R. Martin, J. Electrochem., 148, 1247 (2001).
[67] J. H. Choy, D. H. Kim, C. W. Kwon, S. J. Hwang and Y. I. Kim, J. Power Sources, 77, 1 (1999).
[68] A. Janbey, R.K. Pati, S. Tahir, P. Pramanik, J. Euro. Ceram. Soc., 21, 2285 (2001).
[69] J.J. Kingsley, K.C. Patil, Mater. Lett., 6, 427 (1988).
[70] C.N.R. Rao, in: Chemical Approaches to the Synthesis of Inorganic Materials, Wiley-Eastern, New Delhi, p.28 (1994).
[71] A.G. Merzhanov, in: Chemistry of Advanced Materials: A Chemistry for the 21st Century, C.N.R. Rao (Ed.) Blackwell, London, p.19 (1993).
[72] J. Subrahmanyam, M. Vijayakumar, J. Mater. Sci., 27, 6249 (1992).
[73] A.G. Merzhanov, Int. J. Self-Propag. High-Temp. Synth., 2, 113 (1993).
[74] J.J. Moore, H.J. Feng, Prog. Mater. Sci., 39, 243 (1995).
[75] J.J. Moore, H.J. Feng, Prog. Mater. Sci., 39, 275 (1995).
[76] K.C. patil, S.T. Aruna, S. Ekambaram, Curr. Opinion Solid State Mater. Sci., 2, 158 (1997).
[77] V. Hlavacek, Ceram. Bull., 70, 240 (1991).
[78] J. J. Berzelius, Prog. Ann., 4, 126 (1825).
[79] W. Muthmann and K. Kraft, Liebigs Ann. Chem., 325, 261 (1902).
[80] P. P. Alexander, U. S. Pat. No. 2372168 (1943), No. 2425711 (1944), No. 2467647 (1949).
[81] S. Krapf, Ber. Dtsch. Keram. Ges., 31, 18 (1954).
[82] J. W. McCauley, Ceram. Eng. Sci. Proc., 11, 1137 (1990).
[83] Y. Miyamoto, M. Koizumi and O. Yamada, J. Am. Ceram. Soc., 67, 224 (1984).
[84] M. Koizumi and Y. Miyamoto, Combustion and Plasma Synthesis of High-Temperature Materials P.54, VCH, Weinheim (1990).
[85] J. D. Walton and N. E. Poulos, J. Am. Ceram. Soc., 42, 40 (1959).
[86] O. Odawara and J. Ikeuchi, J. Jpn. Inst. Metals, 45, 316 (1981).
[87] R. A. Cutler, A. V. Virkar and J. B. Holt. Ceram. Engng Sci. Proc., 6, 715 (1985).
[88] K. V. Logan and J. D. Walton, Ceram. Engng Sci. Proc., 5, 725 (1984).
[89] I. M. Low, J. Mater. Sci. Lett., 11, 715 (1992).
[90] L. L. Wang, Z. A. Munir and J. B. Holt, Combustion and Plasma Synthesis of High-Temperature Materials p.204. VCH, Weinheim. (1990).
[91] S. A. Karataskov, V. I. Yuhkvid and A. G. Merzhanov, Combust. Explos. Shock Waves, 21, 687 (1985).
[92] V. I. Yukhvid, S. A. Karataskov et al., Proceeding of the First US-Japanese Workshop on Combustion Synthesis p.7. National Research Institute for Metals, Tokyo, Japan (1990).
[93] M. Eslamloo-Grami and Z. A. Munir, Mater. Sci. Report, 3, 227 (1989).
[94] R. K. Stringer and L. S. Williams, Special Ceramics Vol. 4, p. 37. British Ceramic Research Association, Academic Press, New York (1967).
[95] P. B. Avakyan, M. D. Nersesyan and A. G. Merzhanov, Am. Ceram Soc. Bull, 75, 50 (1996).
[96] R. E. Treece, E. G. Gillan and R. B. Kaner, Comment Inorganic Chem, 16, 313 (1995).
[97] E. G. Gillan and R. B. Kaner, Chem Mater, 8, 333 (1996).
[98] I. Glassman, K. A. Davis and K. Brezinsky, Twenty-Fourth Symposium on
Combustion/ The Combustion Institute, 1877 (1992).
[99] M. S. Wooldridge, S. A. Danczyk and J. Wu, NanoStructured Materials, 11, 955 (1999).
[100] K. C. Patil and R. Soundararajan, Ind. J. Chem Edn., 6, 29 (1979).
[101] K. C. Patil and M. M. A. Sekar, Int. J. Self-Propag High-Temp Synth, 3, 181
(1994).
[102] K. C. Patil, Bull Mater Sci., 16, 533 (1993).
[103] S. T. Aruna and K. C. Patil, J. Mater Synth Processing, 4, 175 (1996).
[104] S. Ramesh, S. S. Manoharan, M. S. Hegde and K. C. Patil, J. Catal., 157, 749
(1995).
[105] S. Ekambaram and K. C. Patil, Bull Mater Sci., 18, 921 (1995).
[106] S. Ekambaram and K. C. Patil, J. Alloys Compounds, 1997, in press.
[107] M. Kottaisamy, D. Jeyakumar, R. Jagannathan and M. R. Mohan, Mater Res.
Bull, 31, 1013 (1996).
[108] K. C. Patil, S. Ghosh, S. T. Aruna and S. Ekambaram, The Indian Potter, 34, 1 (1996).
[109] M. Muthuraman, N. A. Dhas and K. C. Patil, J. Mater Synth Processing, 4, 115
(1996).
[110] S. Ekambaram, N. A. Dhas and K. C. Patil, Int. J. Self-Propag High-Temp
Synth, 4, 85 (1995).
[111] R. G. Chandran, B. K. Chandrashekar, C. Ganguly and K. C. Patil, J. Eur.
Ceram Soc., 16, 843 (1996).
[112] M. Muthuraman, K. C. Patil, S. Senbagaraman and A. M. Umarji, Mater Res
Bull, 31, 1375 (1996).
[113] W. Yang, G. Zhang, X. Jingying, L. Yang and Q. Liu, J. Power Sources, 81, 412
(1999).
[114] C. Julien, S. S. Michael and S. Ziolkiewicz, J. Inorganic Materials, 1, 29 (1999).
[115] H. J. Choi, K. M. Lee and J. G. Lee, J. Power Sources, 103, 154 (2001).
[116] H. B. Park, J. Kim and C. W. Lee, J. Power Sources, 92, 124 (2001).
[117] T. Mimani and K. C. Patil, Mater. Phys. Mech., 4, 134 (2001).
[118] R. W. Rice and W. J. McDonough, J. Am. Ceram. Soc., 68, 122 (1985).
[119] A. G. Merzhanov and A. E. Averson, Combust. Flame, 16, 89 (1971).
[120] R.K. Pati, J.C. Ray, P. Pramanik, J. Am. Ceram. Soc., 84, 2849 (2001).
[121] J.C. Ray, P. Pramanik, S. Ram, Mater. Lett., 48, 281 (2001).
[122] P. Pramanik, Bull. Mater. Sci., 18, 819 (1995).
[123] A. B. Panda, A. Pathak and P. Pramanik, Materials Lett., 52, 180 (2002).
[124] A. K. Adak and P. Pramanik, Materials Lett., 30, 269 (1997).
[125] R. K. Pati, J. C. Ray and P. Pramanik, Materials Lett., 44, 299 (2000).
[126] R. N. Das and P. Pramanik, Materials Lett., 46, 7 (2000).
[127] A. Sen and P. Pramanik, Materials Lett., 52, 140 (2002).
[128] J. C. Ray, A. B. Panda and P. Pramanik, Materials Lett., 53, 145 (2002).
[129] J. C. Ray, C. R. Saha and P. Pramanik, J. Eu. Ceramic Soc., 22, 851 (2002).
[130] J. N. Reimers, E. Rossen, C. D. Jones, J. R. Dahn, Solid State Ionics, 61, 335,
1993.
[131] R. J. Gummow, M. M. Thackeray, W. I. F. David, S. Hull, Mater. Res. Bull., 27,
327, 1992.
[132] I. H. Oh, S. A. Hong, Y. K. Sun, J. Mater. Sci., 32, 3177, 1997.
[133] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R.
Oesten, M. Schmidt, J. Electrochem. Soc., 147, 1322, 2000.
[134] J. Cho, B. Park, J. Power Sources, 92, 35, 2001.
[135] Y. K. Sun, I. H. Oh, J. Mater. Sci. Lett., 16, 30, 1997.
[136] K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I.
Uchida, J. Electrochem. Soc., 148, A422, 2001.
[137] S. Levasseur, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics, 128, 11,2000.
指導教授 費定國(G. Ting-Kuo Fey) 審核日期 2003-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明