博碩士論文 90324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.191.181.231
姓名 張清輝(Ching-Huei Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 耐高溫燃燒觸媒的配製及鑑定
(Synthesis and Characterization of High Temperature Combustion Catalyst)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 高效率醋酸乙酯生產製程研究★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究
★ Au/FexOy 奈米材料之製備 及CO 氧化的應用★ 非晶態奈米鐵之製備與催化性質研究
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
高溫燃燒觸媒可以提高燃燒效果和抑制NOx排放等優點,用來取代傳統的火焰燃燒。Arai在1989年,使用溶膠-凝膠法合成金屬取代的六鋁酸鹽觸媒,並且提到這些觸媒即使在高溫仍可維持高表面積和高催化活性。但是影響製備的參數並未詳述。本研究使用共沈澱和溶膠-凝膠法合成一系列的SLMA和BLMA觸媒,並且探討許多製備條件,包括水量,熟化時間與硝酸鹽金屬水溶液添加速度對樣品結構和表面積的影響。在鑑定樣品的物理性質上,以X光繞射分析鑑定結晶度;由氮吸附分析測定表面積;藉掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察顆粒直徑及晶形。溶膠-凝膠法合成的SLMA在1000℃即可得到SrO·6Al2O3的六鋁酸鹽結構。相對的,以共沈法製備的SLMA是由SrO·6Al2O3和γ-Al2O3所組成的。具有第二相將會降低樣品在較高溫度的表面積。使用共沈法製備SLMA的表面積(20 m2/g),明顯的比使用溶膠-凝膠法合成的表面積(23.6~105.6 m2/g)來的小。溶膠-凝膠法合成的BLMA在1000℃得到BaO·Al2O3的非六鋁酸鹽結構,將會造成BLMA在更高溫度表面積的急速減少。
摘要(英) Abstract
High temperature combustion catalyst has attracted attention as a substitute for conventional flame combustion due to its high energy efficiency and suppressing thermal NOx emission. Arai et al. (1989) synthesized the metal-substituted hexa-aluminate catalyst by hydrolysis of metal alkoxide sol-gel method and reported these catalysts can retain high surface area and high catalytic activity at high flame temperature. The effects of preparation parameters remain unclear. A series of SLMA (Sr0.8La0.2MnAl11O19-α) and BLMA (Ba0.8La0.2MnAl11O19-α) catalysts were prepared by co-precipitation and sol-gel methods, in order to investigate the influence of the amount of water, aging time, and the feeding rate of metal nitrate on the structure and surface area of the sample. The properties of catalysts were characterized by X-ray powder diffraction, nitrogen sorption, scanning electron microscopy, and transmission electron microscopy. The crystalline structure of SLMA (Sr0.8La0.2MnAl11O19-α) prepared by sol-gel method only exhibited hexaaluminate structure, SrO·6Al2O3. It was clearly observed after calcination at 1000 ℃, which is a quite low temperature. In contrast, the crystalline structure of SLMA prepared by co-precipitation method consists of mixed phases of SrO·6Al2O3 and γ-Al2O3. The samples possess the second phase would lowered the surface area at higher calcinations temperature. The surface area of SLMA prepared by co-precipitation was 20 m2/g, which is smaller than the other samples synthesized by sol-gel process, 23.6~105.6 m2/g. One can conclude that the SLMA prepared by sol-gel method is superior to that by co-precipitation. The crystalline structure of BLMA (Ba0.8La0.2MnAl11O19-α) prepared by the sol-gel method is BaO·Al2O3, which is not a hexaaluminate structure, after calcinations at 1000 ℃.Therefore, the surface area of BLMA would decreased rapidly at higher temperature. The shape of SLMA crystalline structure is a thin plate consisted of layered particles with a thickness of about 40 nm, which is about one-fifth of its diameter, but the BLMA crystalline structure is in a taper shape. For the SLMA and BLMA prepared at H2O/alkoxide ratio of 15, the longer the aging time and the slower the feeding rate (1 cc/min) gave the highest surface area (105.6, and 135.6 m2/g) after calcinations at 1000 ℃, respectively.
關鍵字(中) ★ 六鋁酸鹽觸媒
★ 共沈澱
★ 溶膠-凝膠
★ 高溫燃燒觸媒
關鍵字(英)
論文目次 Table of Contents
page
Abstract………………………………………………………………...…i
Table of Contents…………………………………………………...….iii
List of Tables…………………………………………………………….v
List of Figures…………………………………………………..….…..vii
CHAPTER 1. INTRODUCTION………………………………………...1
1.1 Principles of the Catalytic Combustor…………………………...3
1.2 Formation of NOx………………….…………... ...………………3
1.3 NOx control by catalytic mombustion………...…………………..4
1.3.1 Thermal NO control………………………………………….4
1.3.2 Prompt NO control…………………………………………..5
1.3.3 Fuel NO control……………………………………………...6
1.4 Objective………………………………………...…......................6
CHAPTER 2. LITERATURE REVIEW………………………………..7
2.1 High Temperature Materials……………………..…………….......7
2.2 The Support……………………………………………………...7
2.2.1 Alumina (Al2O3)……………………………………………….8
2.2.2 Cordierite (2MgO•2Al2O3•5SiO2)……………………………..11
2.2.3 Mullite (3Al2O3•2SiO2)………………………………………..11
2.2.4 Magnesia (MgO)……………………………………………...12
2.2.5 Zirconia (ZrO2) and Hafnia (HfO2)…………………………...12
2.2.6 Silicon Carbide (SiC)………………………………………....13
2.2.7 NZP (Na2O•ZrO2•P2O5•SiO2)………………………………….13
2.2.8 FeCr Alloy…………………………………………………….14
2.3 Washcoat and Active Material……………………………………15
2.3.1 Hexa-aluminate……………………………………………….15
2.3.1.1 Barium Hexa-aluminate (BaO•6Al2O3)……………………15
2.3.1.2 Metal-substituted Hexa-aluminate…………………………28
2.3.2 Perovskites…………………………………………………….39
2.3.3 Spinels………………………………………………………...41
2.3.4 Pyrochlores……………………………………………………42
2.3.5 Zeolites………………………………………………………..42
2.3.6 Single-metal Oxides…………………………………………..43
CHAPTER 3. EXPERIMENTAL……………………………………….45
3.1 Chemicals………………………………….……………………..45
3.2 Synthesis of SLMA (Sr0.8La0.2MnAl11O19-α)…………………….45
3.2.1 NH4OH co-precipitation method…….……………………45
3.2.2 Hydrolysis of metal alkoxides sol-gel method……………..46
3.3 Synthesis of BLMA (Ba0.8La0.2MnAl11O19-α)…………………….46
3.4 CHARACTERIZATION…………………………………………50
3.4.1 X-ray diffraction (XRD)…………………………………….50
3.4.2 N2 sorption………………………………………………….50
3.4.3 Scanning electron microcopy (SEM)…………………….50
3.4.4 Transmission electron microscopy (TEM)………………...51
CHAPTER 4. Sr-substituted Hexaaluminate (Sr0.8La0.2MnAl11O19-α)…52
4.1 Hydrolysis of metal alkoxides sol-gel method..…………………52
4.1.1 Effect of H2O/alkoxide ratio………………………………..52
4.1.2 Effect of aging time…………………………………………59
4.1.3 Effect of feeding rate………………………………………..65
4.2 NH4OH co-precipitation method………………………………70
4.3 Comparison between sol-gel and co-precipitation method prepared
SLMA…………………………………………………………...73
CHAPTER 5. Sr-substituted Hexaaluminate (Sr0.8La0.2MnAl11O19-α)…78
5.1.1 Effect of H2O/alkoxide ratio……………………………..78
5.1.2 Effect of aging time…………………………………………88
CHAPTER 6. Comparison of SLMA with BLMA…………………..…94
CHAPTER 7. CONCLUSION ……………………………………….100
REFERENCE………………………………….…………………….101
List of Table
Table 2-1 Materials for monolith supports (Johansson et al. 1999)……...9
Table 2-2 Summary of light-off temperatures, specific surface areas and various substitutions for some combustion catalysts (Johansson et al. 1999)……………………………………………………10
Table 2-3 Possible substitutions within the NZP structure (Mckinstry 1991)………………………………………………………….14
Table 2-4 Surface areas of oxide supports and catalytic activities of supported cobalt oxide catalysts for methane combustion (Arai et al. 1986a)…………………………………………………..17
Table 2-5 Effects of preparation conditions on the surface area of BaO•6Al2O3. (Arai et al. 1986b)……………………………..19
Table 2-6 Surface area of alkaline earth metal aluminates and catalytic
activities of supported cobalt oxide catalysts for methane combustion. (Arai et al. 1987)……………………………….21
Table 2-7 Surface areas and crystalline phases of (BaO)0.14(Al2O3)0.86 ( Arai et al. 1988)…………………………………………….23
Table 2-8 Surface area after calcination at 1300 °C for various BHA materials synthesized and processed under different conditions (Ying et al. 2000)…………………………………………….29
Table 2-9 Surface areas and methane combustion activities of BaMAl11O19-α (Arai et al. 1987, 1989)……………………….31
Table 2-10 Phases, surface areas, and catalytic activities of Mn-substitued hexaaluminates with various cation compositions in the mirror plane (Arai et al. 1988, 1990)……………………………….31
Table 2-11 Surface area of Sr1-xLnxMnAl11O19-α after calcinations at 1200 ℃ (Arai et al. 1996)…………………………………………34
Table 2-12 Catalytic activity of Sr1-xLnxMnAl11O19-αa for methane combuston (Arai et al. 1996)………………………………..34
Table 2-13 Surface area and methane combustion reaction ratesa for aerogel-derived hexa-aluminates following calcinations at 1200 ℃ for 5 h. (Yan and Thompson 1998)………………..37
Table 2-14 surface area of hexa-aluminates prepared by NH4OH and (NH4)2CO3 co-precipitation methods and calcined at 1200 ℃ for 2 h (Jang et al. 1999)….…………………………………38
Table 2-15 BET surface areas of Sr1-xLaxMnAl11O19-α after high-temperature calcinations for 2 h. (Jang et al 1999)……40
Table 2-16 CH4 oxidation activity of Sr1-xLaxMnAl11O19-α calcined at 1400 ℃ (Jang et al. 1999)…………………………………..40
Table 4-1 Surface area of SLMA………………………………………..58
Table 4-2 The surface area of SLMA prepared by sol-gel and co-precipitation methods…………………………………...75
Table 5-1 Surface area of BLMA………………………………………83
Table 6-1 Surface area of SLMA and BLMA………………………….96
List of Figures
Figure 1-1. Schematic profiles of temperature and NOx emission in a
combustor. (Arai and Eguchi, 1996)………………………...2
Figure 1-2. A catalytic versus a flame combustor in an open-cycle gas turbine; C= compressor, T= turbine, CC= combustion chamber, temperatures in ℃ (Johansson, 1999)………..…...3
Figure 1-3. CO and NOx emission of different combustion systems. (Arai and Machida, 1991)…………………………………..……..5
Figure 2-1. Crystallographic changes of alumina with temperature. (Heck and Farrauto 1995)…………………………………………11
Figure 2-2. X-ray diffraction patterns of (BaO)x(Al2O3)1-x system calcined at 1450 ℃………………………………………………….17
Figure 2-3. Change in surface areas of (BaO)x(Al2O3)1-x with the composition.(Arai et al. 1986a)……………………………18
Figure 2-4. Temperature dependence of surface areas of (BaO)0.14(Al2O3)0.86 and Al2O3. (Arai et al. 1986b)………..18
Figue 2-5. X-ray diffraction patterns of (BaO)0.14(Al2O3)0.86 after calcinations at various temperatures. (Arai et al. 1986b)….20
Figure 2-6. Crystal structures of (a) magnetoplumbite and (b) β-alumina.
(Arai et al. 1987)…………………………………………..21
Figure 2-7. TEM photographs and EDS Ba/Al atomic ratios of BaO•Al2O3 particles prepared from (A) powder mixtures and (B) hydrolyzed alkoxides. (Arai et al. 1988)………………23
Figure 2-8. (A) SAD patterns taken from a thin particle of BaO•6Al2O3 and (B) the crystal structure of a β-alumina type of compound. (Arai et al. 1988)……………………………...25
Figure 2-9. Transmission electron micrographs (200 kV) of BHA particles
derived from reverse microemulsions containing (a) 1 wt% H2O, (b) 15 wt% H2O, (c) 30 wt% H2O, and (d) 45 wt% H2O, recovered by filtration and calcined at 500 ℃. (Ying et al. 2000)………………………………………………………27
Figure 2-10. Average TEM particle size after calcination at 500°C and BET surface area after calcination at 1300 °C for materials synthesized in reverse microemulsions of various water contents at a water/alkoxide ratio 100 times the stoichiometric value. (Ying et al. 2000)………………...27
Figure 2-11. Transmission electron micrograph (200 kV) and electron diffraction pattern (inset) of reverse microemulsion derived BHA nanoparticles after calcination at 1300 °C. The sample was synthesized in a reverse microemulsion containing15 wt % H2O at a water/alkoxide ratio 100 times the stoichiometric value, aged for 24 h, recovered by freeze-drying, and supercritically dried. (Ying et al. 2000)29
Figure 2-12. Surface area of Sr0.8La0.2MnAl11O19-α after calcinations at 1300 ℃. (Arai et al. 1988, 1990)…………………………32
Figure 2-13. Catalytic activity of Sr0.8La0.2MnAl11O19-α for combustion of methane. (Arai et al. 1988, 1990)………………………...32
Figure 2-14. Surface areas of (a) SLMA (A) and (b) SLMA (B) at various calcinations temperatures. (Kang et al. 1998)……………36
Figure 2-15. A flow chart of procedure used to synthesize the cation-substituted barium hexa-aluminate aerogels and xerogels. Values in parenthesis indicate the molar ratios relative to Al(OC4H9)3. (Yan and Thompson 1998)………36
Figure 2-16. Surface areas of the (△) aerogel-derived Al2O3, (○) aerogel-derived BaAl12O19, (◆) xerogel-derived BaAl12O19 following calcinations at various temperatures for 5 h. (Yan and Thompson 1998)……………………………………..37
Figure 2-17. CH4 oxidation over Sr0.8La0.2MnAl11O19-α hexa-aluminate catalysts synthesized by (NH4)2CO3 co-precipitation and NH4OH co-precipitation. (Jang et al. 1999)……………..38
Figure 3-1. The preparation procedure of the synthesis of SLMA……..47
Figure 3-2. The preparation procedure of the synthesis of SLMA……..48
Figure 3-3. The preparation procedure of the synthesis of BLMA……..49
Figure 4-1. XRD pattern of the SLMA prepared at H2O/alkoxide ratio of 5 under aging for 4 h………………………………………53
Figure 4-2. Crystal structures of (a) magnetoplumbite and (b) β-alumina.
● Al3+, ○ O2+, ◍ Ba2+. (Arai et al. 1987)…………………54
Figure 4-3. XRD patterns of SLMA prepared under aging for 4 h at various H2O/alkoxide ratios……………………………….56
Figure 4-4. XRD patterns of SLMA prepared under aging for 8 h at various H2O/alkoxide ratios……………………………….57
Figure 4-5. The SEM micrograph of SLMA prepared under aging for 4 h at various H2O/alkoxide ratios…………………………….60
Figure 4-6. The SEM micrograph of SLMA prepared under aging for 8 h at various H2O/alkoxide ratios…………………………….61
Figure 4-7. The TEM micrographs of SLMA prepared under aging for 4 h at various H2O/alkoxide ratios……………………………..62
Figure 4-8. The TEM micrographs of SLMA prepared under aging for 8 h at various H2O/alkoxide ratios……………………………..63
Figure 4-9. The XRD patterns of the SLMA prepared at H2O/alkoxide ratio of 15 under different aging times…………………….64
Figure 4-10. The BET surface area of SLMA synthesized with various H2O/alkoxide ratios and aging time………………………66
Figure 4-11. The SEM micrographs of the SLMA prepared with H2O/alkoxide ratio of 15 under various aging periods…...67
Figure 4-12. The TEM micrographs of the SLMA prepared with H2O/alkoxide ratio of 15 under various aging times……..68
Figure 4-13. The XRD patterns of the SLMA prepared at H2O/alkoxide ratio of 1 with various feeding rates……………………...69
Figure 4-14. The SEM micrographs of the SLMA prepared at H2O/alkoxide ratio of 1 with various feeding rates………71
Figure 4-15. The XRD patterns of the SLMA prepared by NH4OH co-precipitation method…………………………………..72
Figure 4-16. The XRD patterns of SLMA prepared by sol-gel method and co-precipitation method…………………………………..74
Figure 4-17. The SEM micrographs of the SLMA prepared by sol-gel and co-precipitation methods…………………………………76
Figure 5-1. XRD pattern of the BLMA prepared at H2O/alkoxide ratio of 10 under aging for 4 h……………………………………..79
Figure 5-2. XRD patterns of BLMA prepared under aging for 4 h at various H2O/alkoxide ratios……………………………….80
Figure 5-3. XRD patterns of BLMA prepared under aging for 8 h at various H2O/alkoxide ratios……………………………….81
Figure 5-4. The SEM micrographs of BLMA prepared under aging for 4 h at various H2O/alkoxide ratios……………………………..84
Figure 5-5. The SEM micrographs of BLMA prepared under aging for 8 h at various H2O/alkoxide ratios……………………………..85
Figure 5-6. The TEM micrographs of BLMA prepared under aging for 4 h at various H2O/alkoxide ratios……………………………..86
Figure 5-7. The TEM micrographs of BLMA prepared under aging for 8 h at various H2O/alkoxide ratios……………………………..87
Figure 5-8. The XRD patterns of the SLMA prepared at H2O/alkoxide ratio of 15 under different aging times…………………….89
Figure 5-9. The BET surface area of BLMA synthesized with various H2O/alkoxide ratios and aging times………………………90
Figure 5-10. The SEM micrographs of the BLMA prepared with H2O/alkoxide ratio of 10 under various aging periods…...91
Figure 5-11. The TEM micrographs of the BLMA prepared with
H2O/alkoxide ratio of 15 under various aging times……..92
Figure 6-1. The XRD patterns of SLMA and BLMA prepared by
hydrolysis of metal oxide sol-gel method………………….95
Figure 6-2. The SEM micrographs of SLMA and BLMA prepared by sol-gel method……………………………………………..97
Figure 6-3. The SEM micrographs of SLMA and BLMA prepared by sol-gel method……………………………………………..99
參考文獻 REFERENCE
Arai, H., Machida, M., and Eguchi, K. “Effect of Additives on the Surface Area of Oxide Supports for Catalytic Combustion” Chem. Lett. 1986, [1], 151-154 (1986).
Arai, H., Machida, M., and Eguchi, K. “Preparation of Heat Resistant Ceramic Support with Large Surface Area from Composite Alkoxides” Chem. Lett. 1986, [11], 1993-1996 (1986).
Arai, H., Machida, M., and Eguchi, K. “Effect of Additives on the Surface Area of Oxide Supports for Catalytic Combustion” J. Cata. 103, 385-393 (1987).
Arai, H., Machida, M., and Eguchi, K. “High Temperature Catalytic Combustion Over Cation-Substituted Barium Hexaaluminates” Chem. Lett. 1987, [5], 767-770 (1987).
Arai, H., Machida, M., Kawasaki, H., and Eguchi, K. “Surface Area and Catalytic Activities of Mn-substituted Hexaaluminates with Various Cation Compositions in the Mirror Plane ” Chem. Lett. 1988, [9], 1461-1464 (1988).
Arai, H., Machida, M., and Eguchi, K. “Preparation and Characterization of Large Surface Area BaO·6Al2O3” Bull. Chem. Soc. Japan 61, 3659-3665 (1988).
Arai, H., Machida, M., and Eguchi, K. “Analytical Electron Microscope Analysis of the Formation of BaO·6Al2O3” J. Am. Ceram. Soc. 71, [12], 1142-1147 (1988).
Arai, H., Machida, M., and Eguchi, K. “Catalytic Properties of BaMAl11O19-α (M=Cr, Mn, Fe, Co, and Ni) for High-Temperature Catalytic Combustion” J. Cata. 120, 377-386 (1989).
Arai, H., Machida, M., and Eguchi, K. “Effect of Structural Modification on the Catalytic Properties of Mn-substituted Hexaaluminates” J. Cata. 123, 477-485 (1990).
Arai, H., Machida, M., and Eguchi, K. “Development of Catalytic Combustion for Emission Control of Nitrogen Oxides” Proceedings of Fukuoka International Symposium 90, 227-236 (1990).
Arai, H., and Machida, M. “Recent Progress in High-Temperature Catalytic Combustion” Cata. Today 10, 81-95 (1991).
Arai, H., and Eguchi, K. “Recent Advance in High Temperature Catalytic Combustion” Cata. Today 29, 379-386 (1996).
Arai, H., and Machida, M. “Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion” Appl. Catal.,A 138, 161-176 (1996).
Arai, H., Inoue, H., Sekizawa, K., and Eguchi, K. “Changes of Crysatlline Phase and Catalytic Properties by Cation Substitution in Mirror Plane of Hexaaluminate Compounds” J. Solid State Chem. 121, 190-196 (1996).
Arai, H., Inoue, H., Sekizawa, K., and Eguchi, K. “Thermal Stability of Hexaaluminate Film Coated on SiC Substrate for High-Temperature Catalytic Application” J. Am. Ceram. Soc. 80, [3], 584-588 (1997).
Arai, H., Inoue, H., Sekizawa, K., and Eguchi, K. “Preparation of hexa-aluminate catalyst thick films on α-SiC substrate for high temperature application” J. Mat. Sci. 32, 4627-1632 (1997).
Agrawal, D. K., Huang, C. Y., and McKinstry, Int. J. Thermophys. 12, 697 (1991).
Berg, M., and Järås, S. “High temperature stable magnesium oxide catalyst for catalytic combustion of methane: A comparison with manganese-substituted barium hexaaluminate” Cata. Today 26, 223-229 (1995).
Bolt, P.H., Habraken, F.H.P.M., and Geus, J.W. “On the Role of a Nial2O4 Intermediate Layer in the Sintering Behavior of Ni/α-Al2O3” j. cata. 151, 300-306 (1995)
Castro, A. Rasines, I., and Turrillas, J. Solid State Chem., 80, 227 (1989).
Cristiani, C., Groppi, G., Forzatti, P., Tronconi, E., Busca, G., and Daturi, M. in 11th Int. Cong. Catalysis. Studies in Surface Science and Catalysis, ed. Hightower, J. W., Delgass, W. N., Iglesia, E., and Bell, A.T., Elsevier science B.V., Amsterdam, (1994).
Cater, R. N., Menacherry, P., Pfefferle, W. C., Muench, G., and Roychoudhary, S. SAE Paper 980672 (1998).
Groppi, G., Cristiani, C., and Forzatti, P. “Preparation, Characterization and Catalytic activity of Pure and Substituted La-Hexaaluminate Systems for High Temperature Catalytic Combustion” Appl. Cata. B 35, 137-148 (2001).
Heck, H. M., and Farrauto, R. J., Catalytic Air Pollution Control -Commercial Technology, Volatile Organic Compounds,chapter 9, Van Nostrand Reinhold, New York, 147-159 (1995).
Hashimoto, Y., Matsuura. I., Takayasu, O., Nitta, K., and Yoshida, Y. “Heat-Stable Ultrafine Single-Crystal Magnesium Oxide and its Character as a Support Material for High-Temperature Combustion Catalysts” 74, 273-280 (1991).
Ismagilov, Z. R., and Kerzhentsev, M. A. “Catalytic Fuel Combustion- A Way of Reducing Emission of Nitrogen Oxides” Cata. Rev. Sci. Eng. 32, 51-103 (1990).
Jang, B. W. L. Nelson, R. M., Spivey, J. J., Ocal, M., Oukaci, R., and Marcelin, G. “Catalytic oxidation of Methane over Hexaaluminates and Hexaaluminate-Supported Pd Catalysts” Cata. Today 47, 103-113 (1999).
Kang, S. K., Woo, S. I., and Sohn, J. M. “Effect of Water Content in the Precursor Solution on the Catalytic Property and Stability of Sr0.8La0.2MnAl11O19 High-Temperature Catalyst” Appl. Cata. B 18, 317-324 (1998).
Lowe, D. M., Gusman, M. I., and McCarty, J. G. “Synthesis and characterization of sintering resistant aerogel complex oxide powders” In Preparation of Catalysts VI; Poncelet, G., Jacobs,P. A., Grange, P., and Delmon, B., Eds.; Elsevier Science B.V.:Amsterdam, 445-452 (1994).
Marti, P. E.; Maciejewski, M.; Baiker, A. “Methane combustion over La0.8Sr0.2MnO3+x supported on MAl2O4 (M = Mg, Ni and Co) spinels” Appl. Catal. B 4, 225-235 (1994).
McCarty, J. G., Chang, Y. F., Wong, V. L. and Johansson, E. M. Symp. Catalytic Combustion, San Francisco, Am. Chem. Soc., Div. Petrol. Chem. 42 (1997).
Marion, M. C., Garbowski, E., and Primet, M. “Catalytic properties of copper oxide supported on zinc aluminate in methane combustion” J. Chem. Soc., Faraday Trans. 87, 1795 (1991).
Neyestanaki, K. A., Kumar, N., and Lindfors, L.-E. “Catalytic combustion of propane and natural gas over Cu and Pd modified ZSM zeolite catalysts” Appl. Catal., B 7, 95-111 (1995).
Subramanian, M. A. Mat. Res. Bull. 25, 107 (1990).
Wang, R. WO Patent 97/05057 (1996).
Yan, L. C., and Thompson, L. T. “Synthesis and Characterization of Aerogel-derived Cation-substituted Barium Hexaaluminates” Appl. Cata. A 171, 219-228 (1998).
Ying, J. Y., Zarur, A. J., and Hwu, H. H. “Reverse Microemulsion-Mediated Synthesis and Structural Evolution of Barium Hexaaluminate Nanoparticles” Langmuir 16, 3042-3049 (2000).
Ying, J. Y., and Zarur, A. J. “Reverse Microemulsion Synthesis of Nanostructured Complex oxides for Catalytic Combustion” 403, 65-67 (2000).
Zeldovich, Y. B., Sandovnikov, P. Y. and Frand-Kamenetskii, D. A. Academy of Sciences of USSR, Institute of Chemical Physics, Moscow-Leningrad (1947).
Zwinkels, M. F.M.; Druesne, S., Björnbom, E., Menon, P. G., and Järås, S.G “Thermal Stability of Complex Oxide Combustion Catalyst Supports
” Ind. Eng. Chem. Res. 37, 391-397 (1998).
Zwinkels, M. F.M.; Haussner, O., Menon, P. G., and Järås, S.G. “Preparation and characterization of LaCrO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18- and Al2O3-coated monoliths” Cata. Today 47, 73-82 (1999).
指導教授 陳郁文(Yu-wen Chen) 審核日期 2003-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明