博碩士論文 90342009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.163.213.149
姓名 陳明正(Ming-Cheng Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 腐蝕劣化混凝土橋梁承載能力之檢測與評估
(Inspection and Evaluation of the Load-Carrying Capacity of Deteriorated Concrete Bridge)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 以四面體離散化多面體系統之接觸分析與模擬★ 向量式DKMT厚殼元推導與模擬
★ 向量式有限元應用於懸索橋非線性動力分析★ 複合版梁元素分析模型之橋梁動態識別法
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 鋼筋混凝土梁補強及防蝕技術之開發
★ 三維計算斷層掃描之射線追蹤正算模式★ 三明治板於鋼筋混凝土梁之補強
★ 混凝土塑性破壞模型之研究★ 三維線性走時內差法於土木構件斷層掃描之應用
★ GFRP 管於鋼筋混凝土構架耐震補強之可行性研究★ 含磚鋼筋混凝土結構非線性行為之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 橋梁是交通網路之關鍵,其安全及可靠性直接或間接影響社會之正常運作及經濟之發展。營運中的安全檢測是必須的,然而綜觀世界各先進國家的橋梁檢測技術之現況,對於橋梁劣化狀況的檢測與評估方法仍需不斷的改進,以期可以落實公共基本設施在其生命週期中之維護工作。
本論文將混凝土橋的劣化分為RC及PC兩類來探討。
首先本研究認為RC結構劣化之最終表徵為裂縫,因此配合鋼筋加速腐蝕實驗結果及依據暫態彈性應力波傳理論,提出混凝土表面裂縫深度檢測之新方法,用來評估RC梁內部裂縫之拓展與承載能力的關聯,進而討論安全範圍內現存的承載能力與修復、補強時機(使用壽命)。
對於PC結構,本研究則認為劣化主因大多為套管滲水引起的鋼鍵腐蝕,此種劣化在部分場合並無明顯的外部徵兆,甚至也不易以其他非破壞檢測(NDT)方法確認,因此本論文依據中子與氫原子最易產生彈性碰撞而熱化的原理,提出以多重中子源及多重偵測器的組合,並適當延長偵測時間,用來檢測預力混凝土套管內是否滲水,做為PC結構劣化潛勢的判斷依據,實驗結果及檢測案例顯示:本法可有效找出預力套管的滲水位置。
依據上述檢測方式,工程人員即可結合AASHTO(2003)之載重及抗力因子評估法(LRFR),進行混凝土結構物的現況承載力之評估。
摘要(英) The deterioration of bridge due to reinforcement corrosion is one of the reasons causing the reduction of the load-carrying capacity of bridges. However, factors causing the steel corrosion are quite complicated and their correlations to load-carrying capacity are ambiguous. It is obvious that detail investigations and development of evaluation technologies are essential to the maintenance work in the life-cycle of infrastructures.
In this thesis, the concrete structures were classified into two groups as reinforced concrete (RC) components and pre-stressed concrete (PC) components to study the associated evaluation methods of deterioration. Crack is identified as the most representative indicator for the deterioration of RC structures. Therefore, a crack tip profile inspection method based on the stress wave propagation theory is developed to assist engineers to quantify the deterioration condition of a flexural member. This inspected crack tip profile can be normalized by the locations of neutral axis obtained by the working stress design (WSD) and ultimate strength design (USD) methods respectively to obtain a deterioration index. This index can be used to determine the value of resistance factor in the AASHTO (2003) method for condition evaluation and load and resistance factor rating (LRFR) of highway bridge.
The accumulating water inside the duct and anchorage of pre-stressed tendon is concerned as the main reason causing the deterioration of PC member. Therefore, the principle of elastic collision between neutrons and hydrogen atoms in the emergence of thermalization suggests the development of an inspection method with multi-neutron sources and multiple detectors to detect the existence of exceeding water content inside a PC member. Experimental results show that the detectable cover thickness of embedded watery zone in the concrete member is increased as the increase of the number of neutron source. From experimental results, a formula is derived to serve as a reference for choosing the combination of ejection source quantity, detector quantity and exposure time. After identifying the location of highly water content, other NDT methods may be applied to identify the damage state of the PC component for further safety and performance evaluations.
關鍵字(中) ★ 混凝土橋梁
★ 腐蝕劣化
★ 承載能力
★ 裂縫深度
★ 應力波
★ 多重中子
關鍵字(英) ★ corrosion
★ load-carrying capacity
★ stress wave
★ multi-neutron source
★ crack
★ concrete
★ bridge
★ deterioration
論文目次 目錄
中文摘要 …………………………………………………i
英文摘要…………………………………………………ii
目錄 …………………………………………………… iv
表目錄 ………………………………………………… vi
圖目錄 …………………………………………………vii
標題
第一章 緒論………………………………………………1
1- 1 研究動機與目的 …………………………………1
1- 2研究主題與步驟 ……………………………………5
第二章 混凝土橋梁之劣化機制與檢測 ………………13
2- 1 鋼筋混凝土構件之劣化機制 ……………………13
2- 2鋼筋腐蝕檢測………………………………………16
2- 3 混凝土碳化、氯離子檢測 ………………………19
2- 4 混凝土強度檢測 …………………………………26
2- 5 鋼筋腐蝕之結構承載力折損 ……………………33
第三章 RC梁之裂尖位置檢測與承載力評估 …………43
3- 1裂縫檢測理論………………………………………50
3- 2 以穿透P波檢測裂尖之方法………………………56
3- 3檢測裂尖位置之實驗室驗證………………………67
3- 4 RC梁現況承載力之建議評估流程 ………………75
第四章 預力構件之檢測 ………………………………79
4- 1預力系統現況與回顧………………………………79
4- 2國內外預力橋梁檢測成果再探討 ………………85
第五章 多重中子源法 …………………………………89
5- 1理論依據……………………………………………89
5- 2多重中子測水公式之推論…………………………90
5- 3 實驗室驗證 ………………………………………95
5- 4半經驗公式的參數推導及檢測步驟 ……………100
第六章 結論與建議……………………………………105
6- 1 RC劣化問題………………………………………106
6- 2 PC劣化問題………………………………………107
參考文獻 ………………………………………………109
附錄 …………………………………………………116
表目錄
表1- 1 台鐵現有橋梁橋齡統計………………………3
表1- 2 公路局歷年橋梁整建經………………………3
表1- 3 鐵路橋梁相關整建經費………………………4
表1- 4 高速公路養護經費 ………………………… 4
表2- 1 鋼筋腐蝕預測說明 …………………………17
表2- 2 混凝土碳化預測說明……………………… 22
表2- 3 單筋矩型斷面fc’變化所引起極限承載力及
握持誤差 ……………………………………29
表2- 4 雙筋矩型斷面 fc’變化所引起極限承載力及
握持誤差 ……………………………………29
表2- 5 試體尺寸、混凝土強度、試體狀況、防蝕貼覆
方式及編號 …………………………………34
表2- 6 斷電後4小時電位差 ………………………36
表2- 7 腐蝕通電量及腐蝕量估計 …………………37
表2- 8 驗結果及承載力折損百分比 ………………39
表3- 1 LRFR載重係數 ………………………………46
表3- 2 耗層靜載重係數 …………………… …… 46
表3- 3 法定載重之活載重係數 ……………………47
表3- 4 允許載重之活載重係數 ……………………48
表3- 5 LRFD應用於混凝土橋之極限狀態分類…… 49
表3- 6 混凝土橋系統係數ψs ………………………50
表3- 7 ρ = 0.375ρb時,Fs≦(1/2)Fy 及Fs = Fy時
NA位置 ………………………………………54
表3- 8 斜裂深度縫檢測結果 ………………………68
表3- 9 混凝土試體材料之相關資料 ………………70
表4- 1 PC梁鋼鍵腐蝕劣化主要檢測方法、原理及檢測
成效 …………………………………………82
表5- 1 套管在不同深度下A、B試體檢測的ΣCR’…98
表5- 2 試體A、B的檢測資料的α, F及σNT………101
表5- 3 可偵測深度與偵測時間的關係 …………101
圖目錄
圖2- 1 混凝土結構性能退化過程示意……………20
圖2- 2 微細裂縫使鋼筋腐…………………………24
圖2- 3 碳化飛灰混凝土試體未腐蝕鋼筋實………25
圖2- 4 編號H均勻腐蝕12年的裂縫與腐蝕裂縫外觀的
參考圖 ……………………………………38
圖2- 5 編號M均勻腐蝕8年的裂縫與腐蝕裂縫外觀的
參考圖 …………………………………… 38
圖2- 6 H-試體實驗荷載曲線及理論分析…………39
圖2- 7 M-試體實驗荷載曲線及理論分析圖 ……40
圖2- 8 L-試體實驗荷載曲線及理論分析…………40
圖3- 1 鋼筋比與NA位置的關係……………………53
圖3- 2 WSD及USD所計算的NA位置及一般荷重下裂縫
Cn 之示意 …………………………………55
圖3- 3 波傳走最短距離 (L1) 及 (L2) 示意透視
圖……………………………………………58
圖3- 4 不經裂縫之波傳 ………………………… 59
圖3- 5 經過裂縫之波………………………………60
圖3- 6 波傳可能繞經的裂…………………………61
圖3- 7 裂尖位置CC’界於CD及CC”之間…………61
圖3- 8 任一橫截面(1' 2' 3' 4' )與圓弧(軸對稱橢
球)曲面的交線(曲線)為可能裂尖 ………62
圖3- 9 在不同高程處(C1)佈設(S)及(A)(B)探頭方式
(側視圖)……………………………………62
圖3-10 本穿透P波法(上圖)與一般表面P波方法(下
圖)比較之首達波訊號 ……………………63
圖3-11 首達波到達時間與雜訊干擾之關係 …… 65
圖3-12 使用單一接收器,以振動頻譜反算穿透P波波
速之量測方法………………………………66
圖3-13 斜裂縫檢測方法圖示………………………67
圖3-14 斜裂縫檢測結果 ………………………… 68
圖3-15 剪力破壞試體尺寸,及載重實驗方式 …70
圖3-16 剪力破壞實驗結果 …………………………70
圖3-17 拉力破壞試體尺寸,及載重實驗方式 ……74
圖3-18 撓曲破壞實驗結果 …………………………74
圖3-19 以內部裂縫位置配合LRFR承載力評估法之評估
流程 …………………………………………77
圖4- 1 橋面板的可能滲水路徑 ……………………87
圖5- 1 為單一射源與多重射源對偵測器補獲熱中子
機率(範圍)的比較示意圖 …………………92
圖5- 2 內埋入直徑8cm預力套管之混凝土試體……96
圖5- 3 (a)以1台儀器合併之檢測方式示意圖 ……97
圖5- 3 (b)以2台儀器合併之檢測方式照相圖 ……97
圖5- 3 (c)以3台儀器合併之檢測方式照相圖 ……97
圖5- 4 套管在不同深度、不同滲水量下,A試體的Σ
CR’ …………………………………………99
圖5- 5 套管在不同深度、不同滲水量下B試體的Σ
CR’ …………………………………………99
圖5- 6 以(2/2)組合,檢測出鋼鍵已腐蝕斷裂 …104
附錄
附錄A 腐蝕與承載能力實驗圖片…………………116
附錄B 穿透P波法檢驗裂縫以及評估承載能力之實驗
圖片…………………………………………121
附錄C 預力構件之損傷圖片及網站………………125
附錄D 多重中子源檢測預力套管滲水實驗………131
參考文獻 參考文獻
1. Dan, M. Frangopol, "Life-Cycle Cost Analysis and Design of Civil
Infrastructure System," American Society of Civil Engineers (ASCE), pp.1-
21 (2001).
2. Huang, Rong-Yau, Sun, Kuo-Shun and Chen, Jeam-jei, "Construction Planning
for Gang Formwork Reuse Using Simulation, " the 17th International
Symposium on Automation and Robotics in Construction (ISARC-17), Taiwan,
(September 18-20, 2000)
3. Frangopol, D. M., "Bridge Safty and Reliability," American Society of
Civil Engineers (ASCE),(1999).
4. 牛荻濤,「混凝土結構耐久性與壽命預測」,中國大陸科學出版社,(2003)。
5. Frangopol, D.M., Hearn, G. eds., Structural Reliability in Bridge
Engineering: Design, Inspection, Assessment, Rehabilitation and
Management, MaGraw-Hill Book Co., Inc., New York, N.Y. (1996).
6. Wardhana, K. and Hadipriono, F. C., "Analysis of Recent Bridge Failures in
the United States, " Journal of Performance of Constructed Facilities
(ASCE), Vol.17, No.3, pp.144-150 (2003).
7. AASHTO, Manual for Condition Evaluation and Load and Resistance Factor
Rating (LRFR) of Highway Bridge, American Association of State Highway and
Transportation Officials (2003).
8. Eliahu. Z., Fatigue Design, Solomon Press Book, New York. (1996).
9. Julie, A., Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc. New
Jersey. (1990).
10. Shah, S. P. and Swartz, S. E., Fracture Mechanics of Concrete, John Wiley
and Sons, Inc. New York. (1995).
11. Swartz, S. E., "Concrete Fatigue and Fracture: Plain and Reinforced Beam,"
Fatigue and Fracture in Steel and Concrete Structures, Madras India,
pp.401-421, (1991).
12. Oh, B. H., "Fatigue-Life Distribution of Concrete for Various Stress
Levels," and Fracture: Plain and Reinforced Beam", ACI Materials Journal,
Vol. 88, No. 2, pp. 122-128. (1991).
13. ACI committee 215, "Consideration for Design of Concrete Structures
Subjected to Fatigue Loading," ACI Structures Journal, Vol. 71, No. 3, pp.
97-121.(1974).
14. Papaakis V G, Vayenas C G, Fardis M N, "Physical and chemical
characteristics affecting the durability of concrete, " ACI Materials
Journal. pp.186~196. (1991).
15. 岸谷孝一,「鋼筋混凝土的耐久性」,鹿島建設技術研究所(日本),(1963)。
16. 魚本建人,高田良章,「混凝土碳化速度及擴散要因」,土木學會論文集(日本),pp
72~83. (1992)。
17. Lesage-de-Contenay C., "Deterioration and repair," Bahrain Proc. pp.
467~483. (1995).
18. 張譽,蔣利學,「基於碳化機理的混凝土碳化深度實用數學模型」,工業建築(北
京),pp.16~19,(1998)。
19. Rodriguez J, et al. "Corrosion of reinforcement and service life of
concrete structure," Durability of Building Materials and Components 7,
London, (1996).
20. Bentur, A., Steel corrosion in concrete, E & FN Spon, London.(1996).
21. Florida Department of Transportation Central Structures Office, "Test and
Assessment of NDT Methods for Post-Tensioning Systems in Segmental
Balanced Cantilever Concrete Bridges," State of Florida Department of
Transportation (2003).
22. Highway Agency, SETRA, TRL, LCPC, Post-Tensioned Concrete Bridges, Thomas
Telford Publishing, London (1999).
23. Gupta, S., Itoh Y. and Niwa, J. I., "An Object-Oriented Diagnostic System
for Pre-stressed Concrete Bridges," Microcomputers in Civil
Engineering, pp.385-399, Published by Blackwell Publishers, USA (1994).
24. 中華民國材料科學協會,材料手冊-鋼鐵材料,第三章炭鋼,第79~82頁,中華民國材
料科學協會 (1982)。
25. ACI, "Control of Cracking in Concrete Structures",ACI committee-224-89
First printing, (May 1990)
26. 施建志,「結構物腐蝕問題及防蝕技術」,台灣營建研究院,第171-248頁(2000)。
27. Gonzalez, J. A., Algaba, S. and Andrade, C., "Corrosion of Reinforcing
Bars in Carbonated Concrete," Concrete Corrosion Inhibitors Association
(CCIA), Vol. 15, No. 3, pp. 135-139 (1980).
28. Ngala, V. T. and Page, C. L., "Effects of Carbonation on Pore Structure
and Diffusional Properties of Hydrated Cement Pastes," Cement and Concrete
Research, Vol. 27, No. 27, pp. 995-1007 (1997).
29. Mangat, P. S. and Molley, B. T., "Chloride Binding in Concrete Containing
PFA,GBS or Silica Fume under Sea Water Exposure," Magazine of Concrete
Research, Vol. 47, No. 171, pp. 129-141 (1995).
30. 和全意登志,押田文雄,「老舊建築物中混凝土碳化與鋼筋腐蝕」,日本建築協會構
造系論文集,pp.1~12 (1989)。
31. JCI Committee, "Inspection Technology of Concrete", Japan Concrete
Institute of Fundamental. (2003).
32. Wang, T. M., "Control of Cracking in Engineering structural", China
Construction Industry Publishing (1999).
33. Mallett, G. P., Repair of Concrete Bridges, Thomas Telford Services Ltd.
(1996).
34. ACI, "ACI 318-02 Standard Building Code," ACI Committee (2002).
35. CNS,「中國國家標準」,土木工程及建築類第18.2.5條,中華民國經濟部標準檢驗
局 (1999)。
36. Tng, Shuenn-Chern et al., "Effect of reinforcement steel area on flexural
behavior of reinforced concrete beams".ACI Structural Journal. pp.
309~314. (1991)
37. Rose, C.A. et. al, "Effects of Strain Rate on concrete strength". ACI
Material Journal, Technical paper, Title No. 92-M5. (1995).
38. 王嫻明等,「混凝土結構耐久性檢測指南」,中國大陸建設部科技研究課題85-19-
08,混凝土結構耐久性及耐久性設計鑑定文件之三,(1996)。
39. Al-Sulaimaini G J, et al., "Influence of Corrosion and cracking on bond
behavior and strength of reinforced concrete members". ACI Material
Journal. pp. 220~231. (1990).
40. Wang, C. Y., Shih, C. C., Hong, S. C., and Hwang, W. C., "Rehabilitation
of Cracked and Corroded RC Beams with FRP Patches," Journal of composites
for construction by ASCE, Vol. 8. No. 3, pp. 219-228 (2004).
41. 陳明正、王仲宇、胡智超、施建志,「劣化RC梁修復時機之探討」,清雲學報 第二四
卷 第二期 第25~35頁 (2004)。
42. 交通部,「公路法-交通技術標準規範」,第二章第5.4節,中華民國交通部編印
(2003)。
43. Al-Kadhimi,T. K. H., and Banfill, P. F. G., "An experimental investigation
into the effects of electrochemical re-alkalisation on concrete,"
Corrosion of Reinforcement in Concrete Construction, pp. 501-511, Ed.
Page, C. L., Bamforth, P. B. and Figg, J. W., Hartnolls, Cornwall (1996)
44. Francois, R. and Maso, J. C., "Effect of Damage in Reinforced Concrete on
Carbonation or Chloride Penetration", Cement and Concrete Research.
Vol.18, pp. 961-970, (1988).USA.
45. 陳明正、王仲宇,「RC結構現況承載力評估之裂縫深度分析法」,中國土木水利工程
學刊,第十七卷,第三期,第471~479頁,(2005)。
46. ACI Committee2O1, "Durable Concrete", American Concrete Institute,
Detroit, (1992).
47. Mangat , P. S. , and Elgarf , M. S. , "Flexural Strength of Concrete Beam
with Corroding Reinforcement," ACI Structural Journal, Vol. 96 , No.1 ,
January-February , PP.149-158, (1999).
48. ACI 224.1R-93, "Causes, Evaluation and Repair of Cracks in Concrete
Structures", American Concrete Institute, Detroit, (1998).
49. ASTM C 1383, "Standard Test Method for Measuring the P-Wave Speed and
Thickness of Concrete Plates Using the Impact-Echo Method," Annual Book of
ASTM Standards,Vol. 04.02 (1998).
50. 吳政忠,方金壽,「彈性波動之橫向位移訊號感測器及感測方法」,中華民國發明專
利第085420號,(1996)。
51. Francesco, L. S. Piervincenzo, R. and Frieder, S., "Stress Measurement and
Defect Detection in Steel Strands by Guided Stress Waves," Journal of
Materials in Civil Engineering (ASCE), Volume 15, Issue 3, pp. 219-227.
(2003).
52. Gautesen, A. K., McMaken, H., "Ray Methods for Waves in Elastic Solids -
With applications to scattering by cracks," Pitman Advanced Publishing
Program,Boston. (1982).
53. Lin, Y. and Sansalone. M.,. "Detecting Flaws in Concrete Beams and Columns
Using the Impact-Echo Method," ACI Materials Journal, Vol. 89, No. 4, pp.
394-405. (1992)
54. Ming-Cheng Chen, Chung-Yue Wang, "Reinvestigation of Deteriorated RC
Bridge Girder Inspection Methods," Journal of the Chinese Institute of
Engineers, (submitted),(2005).
55. Clemena, G. G., "Evaluation of nondestructive evaluation methods for
application in early detection of deterioration in concrete pavement,"
Final report, Virginia Transportation Research Council, USA (2001).
56. Washer, G. A., "Developing NDE technologies for infrastructure
assessment," Journal of Federal Highway Administration, Vol.63, No.4, pp.
44-50, Federal Highway Administration, USA (2001).
57. Lin, Y.F., Lin, Y., and Tsai, B.Y., "Evaluating Bond Quality at the
Interface Between Reinforcing Bars and Concrete Using the Impact-Echo
Method," ACI Materials Journal, Vol. 101, No. 2, pp. 154-161. (2004).
58. Huang, Y.L., Lin, Y., Lee, C.F., Chen, H.J., and Yen, T., "Design Load-
Carrying Capacity Estimates and an Improved Wooden Shore Setup,"
Structural Engineering and Mechanics, Vol. 17, No. 2, pp. 167-186.( 2004).
59. Lin, Y., Chang, C., Kuo, S.F., and Liou, H.C., "A Simple Device for
Detecting Impact Time in Impact-Echo Testing of Concrete," NDT&E
International, Vol. 37, No. 1, pp. 1-8. 2004. (2004).
60. Henriksen, C.F., Prediction of Service Life and Choice of Repair Strategy,
Durability of Building Materials and Components 6, edited by Nagataki, et
al. E & FN Spon, pp.1100~1106,(1993)..
61. Behari, J., "Physical Methods of Soil Characterization," Narosa Publishing
House, New Delhi, India. pp. 47-51, (2001).
62. 翁寶山,保健物理概論,黎明書局 (1984)。
63. 侯寶隆,蔣之桻,混凝土非破損檢測, 第127-147頁, 地震出版社,中國大陸
(1992)。
64. ASTM, "Method of Moisture Content of Soil and Soil Aggregate in Place by
Nuclear Methods (Shallow Depth)," ASTM D3017 (1991).
65. ASTM, "Standard Test Method for Density of Bituminous Concrere in Place by
Nuclear Methods, " ASTM D2950 (1991).
66. ASTM, "Method of Density of Soil and Soil Aggregate in Place by Nuclear
Methods (Shallow Depth), " ASTM D2922, (1991).
67. 原子能委員會,游離輻射防護彙萃,修訂二版,原子能委員會核能研究所編(1996).
68. Lesage-de-Contenay C., "Deterioration and repair," Bahrain Proc. pp.
467~483. (1995).
69. 張譽,蔣利學,「基於碳化機理的混凝土碳化深度實用數學模型」,工業建築(北
京),pp.16~19,(1998)。
70. 許俊男,「溫泉、北投石與輻射激效」,發現北投石100周年研討會,(2005)
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2005-11-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明