博碩士論文 90343006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:18.189.182.96
姓名 楊進義(Ching-Yi Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鈹中和劑與鍶、銻改良劑對A357鋁合金微結構及性質之影響
(Effects of Be neutralizer and Sr / Sb modifiers on the microstructure and properties of A357 alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) A357鋁合金(Al-7Si-0.7Mg)具有優良的鑄造性、焊接性、耐熱脆裂性及高比強度等優點,因此廣泛使用於航太與汽車工業的零件製造上。鐵為Al-Si-Mg合金中最常見的一種雜質元素,其極容易於鑄造時與Al、Si及Mg形成各種金屬間化合物,對材料的機械性質造成危害,添加中和劑可改變富鐵相的外貌至較無害的形態,故本論文探討A357鋁合金中添加不同比率的鐵與鈹,研究其含量對富鐵相之形態,以及合金機械與腐蝕性質之影響。此外,矽粒子在鋁合金中為硬脆的第二相,其大小與形狀會影響合金的耐磨耗性,而添加改良劑可改變共晶矽的形態,本論文將研究添加不同改良劑(鍶與銻)對A357鋁合金經T6熱處理後之滑動磨耗性質的影響。
本研究藉由光學顯微鏡、電子顯微鏡、電子微探儀、影像分析、導電度量測及熱差掃描分析等微結構之觀察與分析,結合拉伸、腐蝕與磨耗等性質的試驗,獲得以下結果:
A357鋁合金中存在的富鐵相有粗針狀(β-FeSiAl5)及中文字形(π-FeMg3Si6Al8),鈹的添加可使兩種富鐵相轉變為球形不含鎂的Fe-Si-Al富鐵相,使基地中所固溶的鎂含量增加,並增加強化相(Mg2Si)的析出動力及析出量,進而提升合金的拉伸性質,同時,鈹的添加可讓矽粒子球化與細化,並減少富鐵相的數量,可增加合金的機械性質與耐腐蝕性,然而,鐵含量的增加,可使富鐵相的數量增加,導致機械與耐腐蝕性質的下降。
在磨耗試驗方面,A357鋁合金的磨耗行為會受到矽粒子形態與機械混合層(MML)的影響,對於添加改良劑的合金有較好的耐磨耗性,且鍶改良劑比銻改良劑的效果好,此乃因添加鍶改良劑的合金比添加銻改良劑與未添加改良劑的合金有較細小且球形的共晶矽,在磨耗過程中合金內有較少裂縫產生,另一方面,含鍶改良劑的合金在磨面上有一層較穩定的機械混合層,可保護基材免於磨損。
摘要(英) A357 aluminum alloy(Al-7Si-0.7Mg) is extensively used in the aerospace and automotive industries, due to its excellent properties that include castability, weldability, hot-cracking resistance and specific strength. Iron is the most deleterious impurity in the Al-Si-Mg cast alloy. Fe combines with Al, Si, and Mg to form various intermetallic compounds during solidification. The intermetallic phase is considered to have the worst effect, as it significantly decreases the ductility of material. Adding neutralizer to an alloy can change the shape of iron-bearing phase to the harmless shape. This work investigated how Be and Fe affect the morphologies of iron-bearing phase in addition to the mechanical and corrosion behaviors of A357 alloys. Furthermore, silicon is added to aluminum alloy as a second phase. The wear properties of aluminum alloys are significantly affected by the silicon morphology. The addition of modifier to A357 alloy can alter the morphology of the silicon particles. Therefore, this study examines the sliding wear characteristics of an unmodified A357 alloy and the alloy modified with Sr / Sb in the T6 heat-treated condition.
Microstructural features were elucidated by optical microscopy, scanning electron microscopy, electron probe X-ray microanalysis, image analysis, measurement of electrical conductivity and differential scanning calorimetry. The microstructure was correlated with tensile, corrosion and wear testing.
The results of present works revealed that many platelet-like (β-FeSiAl5) and Chinese-script (π-FeMg3Si6Al8) iron-bearing phases were found in A357 alloys. These structures are replaced by a nodular shape Mg-free structure of iron-bearing constituents when Be is added. Adding Be to the alloy can increase the level of solid Mg solution, change the morphology of silicon particles to a small and globular shape, subsequently reducing the amount of iron-bearing phases. Be can also enhance the precipitation kinetics and increase the quantity of Mg2Si precipitates to improve the tensile properties of A357 alloys. The corrosion behavior of A357 alloy was affected by the morphology of the silicon particles and the amount of iron-bearing phases. The corrosion resistance improved when the amount of iron-bearing phases was reduced and the silicon particles were spheroidized and refined. Analysis of the A357 alloys containing different quantities of Fe indicates that the amount of iron-bearing phases increases with increasing Fe content, decreasing the alloy’s corrosion resistance and worsening its mechanical properties.
The wear behavior of A357 alloys was influenced by the morphology of silicon particles and the stability of the mechanically mixed layer (MML). Sliding wear tests revealed that the addition of both Sr and Sb modifiers improves the wear resistance of the alloy. This beneficial effect of enhanced wear resistance was more apparent in the Sr-modified alloy than the Sb-modified one. This was attributed to the lower cracking tendency of the Sr-modified alloy owing to the near-spherical nature of silicon particles. Furthermore, the silicon particles in the Sr-modified alloy were finer and more spherical than those in the Sb-modified and unmodified alloys. Additionally, the decreased wear rate was also substantiated through the formation of a stable MML on the worn surface. Observations of worn surfaces showed more stable MML on the worn surface of Sr-modified alloy than for the unmodified and Sb-modified alloys.
關鍵字(中) ★ 中和劑
★ 富鐵相
★ A357鋁合金
★ 耐腐蝕性
★ 矽形態
★ 機械混合層
★ 改良劑
關鍵字(英) ★ A357 alloy
★ Neutralizer
★ Iron-bearing phase
★ Corrosion resistance
★ Silicon morphology
★ Modifiers
★ Mechanically mixed layer
論文目次 目 錄
中文摘要 I
英文摘要 III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XⅢ
第一章 研究背景與文獻回顧 1
1.1 A357鑄造鋁合金簡介 1
1.1.1鋁合金簡介 1
1.1.2 A357鋁合金性質簡介 3
1.2研究背景與文獻回顧 7
1.3研究動機與目的 15
第二章 基礎理論 18
2.1 A357鋁合金基礎理論 18
2.1.1 合金凝固特性 18
2.1.2合金熱處理 20
2.2 A357鋁合金的腐蝕 25
2.3電化學之Tafel 極化法腐蝕量測 27
2.4 磨耗 30
第三章 實驗方法 36
3.1合金準備與鑄造 36
3.1.1 不同鈹與鐵含量合金之製作(合金A、B、C與D) 36
3.1.2不同改良劑種類合金之製作(合金E、F與G ) 39
3.2 熱處理 39
3.3 微結構觀察與分析 39
3.3.1光學顯微鏡 39
3.3.2掃描式電子顯微鏡 40
3.3.3穿透式電子顯微鏡 40
3.3.4電子微探儀 40
3.3.5影像分析 41
3.3.6導電度量測 41
3.3.7熱差掃瞄分析 42
3.4機械性質試驗 43
3.4.1 硬度試驗 43
3.4.2 拉伸試驗 43
3.5腐蝕性質試驗 43
3.6磨耗試驗 44
第四章 結果與討論 48
4.1鈹與鐵含量對合金微結構、機械與腐蝕性質的影響 48
4.1.1 微結構分析 48
4.1.2 機械性質試驗 59
4.1.3腐蝕試驗 65
4.2改良劑對A357合金耐磨耗性質的影響 70
4.2.1 微結構分析 70
4.2.2磨耗試驗 75
第五章 結論 97
第六章 未來研究方向 100
參考文獻 102
參考文獻 1.J. E. Hatch, “Aluminum: properties and physical metallurgy”, ASM International, Metals Park, Ohio, 1984, pp. 320-377.
2.J. R. Davis, “Aluminum and aluminum alloys”, ASM International Materials Park, Ohio, 1994, pp.199-228.
3.Knutsson and G. Sjoberg, “Aluminum use in the automotive industry”, Light Metals, TMS, 1992, pp. 1137-1141.
4.J. E. Gruzleski and B. M. Closset, “The treatment of liquid aluminum-silicon alloys”, AFS Inc., Illinois, 1990, p. 13.
5.G. T. Hahn and A. R. Roesnfield, “Metallurgical factors affecting fracture toughness of aluminum alloys”, Metall. Trans. A, Vol.6, 1975, pp. 653-670.
6.E. N. Pan, M. W. Hsieh, S. S. Jang and C. R. Loper, “Study of the influence of processing parameters on the microstructure and properties of A356 aluminum alloy”, AFS Trans., Vol. 97, 1989, pp. 397-414.
7.W. Laorchan and J. E. Gruzleski, “Grain refinement, modification and melt hydrogen-their effects on micro-porosity, shrinkage and impact properties in A356 alloy”, AFS Trans., Vol.100, 1992, pp. 415-424.
8.邱弘興,胡瑞峰,.潘永寧, “製程參數對A356 鋁合金孔洞影響之探討”,中國機械工程會第八屆學術研討會, 台北市、民國80年11月24日, pp. 983-992.
9.A. M. Samuel and F. H. Samuel, “A metal-graphic study of porosity and fracture in relation to the tensile properties in 319.2 end chill castings”, Metall. Mater. Trans. A, Vol. 26, 1995, pp. 2359-2372.
10.A. M. Samuel and F. H. Samuel, “Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 end chill aluminum castings”, J. Mater. Sci., Vol. 30, 1995, pp. 4823-4833.
11.R. Dasgupta, C. C. Brown and S. Marek, “Effect of increased magnesium content on the mechanical properties of sand-cast 319 aluminum alloy”, AFS Trans., Vol. 97, 1989, pp. 245-253.
12.D. Argo and J. E. Gruzleski, “Porosity in modified aluminum alloy castings”, AFS Trans., Vol. 96, 1988, pp. 65-74.
13.W. R. Opie and N. J. Grant, “Hydrogen solubility in aluminum and some aluminum alloys”, Trans. AIME, Vol.188, 1950, pp. 1237-1241.
14.Aladar Pacz, United States Patent 1,387,900, Aug. 16, 1921.
15.G. K. Sigworth, “Theoretical and practical aspects of the modification of Al-Si alloys”, AFS Trans., Vol. 91, 1983, pp. 7-16.
16.T. J. Hurley and R. G. Atkinson, “Effects of modification practice on aluminum A356 alloys”, AFS Trans., Vol. 93,1985, pp. 291-296.
17.N. Handisk, J. E. Gruzleski and D. Argo, “Sodium, strontium, and antimony interactions during modification of AS7G03(A356) alloys”, AFS Trans., Vol. 95, 1987, pp. 31-38.
18.Liu Qiyang, Li Qingchun and Liu Qifu, “Modification of Al-Si alloys with sodium”, Acta Metall. Mater.., Vol.39, 1991, pp. 2497-2502.
19.S. Z. Lu and A. Hellawell, “The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning”, Metall. Trans., Vol. 18 ,1987, pp. 1721-1733.
20.M. D. Hanna, S. Z. Lu and A. Hellawell, “Modification in aluminum-silicon system”, Metall. Trans., Vol.15, 1984, pp. 459-469.
21.B. Closset and J. E. Gruzleski, “Structure and properties of hypoeutectic Al-Si-Mg alloys modified with pure strontium”, Metall. Trans. A, Vol.13, 1982, pp. 945-951.
22. M. Shamsuzzoha, L. M. Hogan and J. T. Berry, “Effects of modifying agents on crystallography and growth of silicon phase in Al-Si casting alloys”, AFS Trans.,Vol. 102, 1993, pp. 999-1005.
23. S. Khan and R. Elliot, “Effect of antimony on the growth kinetics of aluminum-silicon eutectic alloys”, J. Mater. Sci., Vol.29 , 1994, pp. 736-741.
24. A. I. Telli and S. E. Kisakurek, “Effect of antimony additions on the silicon spacing in directionally solidified Al-Si eutectics”, Scripta Metall., Vol.20, 1986, pp.1657-1660..
25. W. Wang and J. E. Gruzleski, “Interactive effects during sodium or strontium treatment of antimony containing A356 alloy”, AFS Trans., Vol. 98, 1990, pp. 227-233.
26. N. Tenekedjiev, D. Argo and J. E. Gruzleski, “Sodium, strontium and phosphorus effects in hypereutectic Al-Si alloys”, AFS Trans., Vol. 97, 1989, pp.127-136.
27. J. E. Gruzleski and B. M. Closset, “The treatment of liquid aluminum-silicon alloys”, AFS Inc., Illinois, 1990, p. 110-116.
28. N. A. Belov and T. A. Kurdyumova, “The Al-Si-Fe-Be phase diagram and the possibility of ferrous phase neutralization in silumins”, Russ. Metall. (Engl. Transl), Vol.2, 1989, pp. 207-212.
29. S. G. Shabestari, J. E. Gruzleski, “Modification of iron intermetallics by strontium in 413 aluminum alloys”, AFS Trans., Vol. 103, 1995, pp. 285-293.
30. S. Nishi, T. Shinoda and E. Kato, “Effects of iron contents, additions of beryllium, and cooling rate on mechanical properties of aluminum-silicon-magnesium-zinc cast alloys”, J. Japan Inst. Light Metals, Vol.18, 1968, pp. 627-635.
31. K. G. Wikle, “Improving aluminum castings with beryllium”, AFS Trans., Vol. 86 ,1978, pp. 513-518.
32. S. Murali, K. S. Raman and K. S. S. Murthy, “The formation of ?-FeSiAl5 and Be-Fe phases in Al-7Si-0.3Mg alloy containing Be”, Mater. Sci. and Eng. A, Vol.190, 1995, pp. 165-172.
33. G. K. Sigworth, “Determining grain size and eutectic silicon modification in aluminum alloy castings”, Modern Casting, July ,1987, pp. 23-25.
34. G. Gustafsson, T. Thorvaldsson, and G. L. Dunlop, “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys”, Metall. Trans. A, Vol.17, 1986, pp. 45-52.
35. S. Murali, K. S. Raman and K. S. S. Murthy, “Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe-containing Al-7Si-0.3Mg Alloy”, Cast Metals, Vol.6, 1994, pp. 189-198.
36. P. S. Wang, Y. J. Liauh, S. L. Lee and J. C. Lin, “Effects of Be addition on microstructures and mechanical properties of B319.0 alloys”, Mater. Chem. Phys., Vol. 53, 1998, pp. 195-202.
37. D. A. Granger, R. R. Sawtell and M. M. Kersker, “Effect of beryllium on the properties of A357.0 castings”, AFS Trans., Vol. 92,1984, pp. 579-586.
38. Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe content on plane strain fracture toughness in A357 alloys”, Metall. Mater. Trans. A, Vol.26, 1995, pp. 2937-2945.
39. D. L. Colwell and R. J. Kissling, “Die and permanent mold casting aluminum alloy minor elements”, AFS Trans., Vol.69, 1961, pp. 610-615.
40. C. J. Tseng, S. L. Lee, S. C. Tsai and C. J. Cheng, “Effects of manganese on microstructure and mechanical properties of A206 alloys containing iron”, J. Mater. Res., Vol.17 ,2002, pp. 2243-2250.
41. L. F. Mondolfo, “Aluminum alloys : structure and properties”, London, Butterworth’s, Ltd., 1976, pp. 534-578.
42. A. Couture, “Iron in aluminum casting alloys-A literature survey”, AFS Int. Cast Metals J., Vol, 6, 1981, pp. 9-17.
43. P. Skierpe, “Intermetallic phases formed during DC-casting of an Al-0.25%Fe- 0.13%Si alloy”, Metall. Trans. A, Vol.18 ,1987, pp. 189-200.
44. P. Janason, “Thermal fatigue of cylinder head alloys”, AFS Trans., Vol. 100, 1992, pp. 601-607.
45. L. A. Bendersky, A. J. Mcalister and F. S. Biancaniello, “Phase transformation during annealing of rapidly solidified Al-rich Al-Fe-Si alloys”, Metall. Trans. A, Vol.19, 1988, pp. 2893-2900.
46. S. Jocob and D. Fontaine, “Burning of A-U5GT alloy during heat treatment”, Fonderie, Vol. 294, 1970, pp. 326-336.
47. B. Xiufang and Z. Guohua, “The spheroidisation of needle-form iron compounds in an Al-Si alloy”, AFS International Cast Metal Journal, Vol. 5, 1992, pp. 39-41.
48. M. M. Buarzaiga and S. J. Thorpe, “Corrosion behavior of as-cast, silicon carbide particulate-aluminum alloy metal-matrix composites”, Corrosion, Vol. 50, 1994, pp.176-185.
49. K. Y. Wen, W. Hu and G. Gottstein, “Intermetallic compounds in thixoformed aluminium alloy A356”, Mater. Sci. Technol., Vol.19, 2003, pp. 762-768.
50. P. N. Crepeau, “Effect of iron in Al-Si casting alloys: a critical review”, AFS Trans., Vol.103, 1995, pp. 361-366.
51. L. A. Narayanan, F. H. Samuel and J. E. Gruzleski, “Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy”, Metall. Mater. Trans. A, Vol. 25 , 1994, pp. 1761-1773.
52. Y. Awano and Y. Shimizu, “Non-equilibrium crystallization of AlFeSi compound in melt-superheated Al-Si alloy casting”, AFS Trans., Vol. 98,1990, pp. 889-895.
53. A. M. Samuel and F. H. Samuel, “Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of Al-Si-Cu-Mg-Fe-Mn (380) aluminum die casting alloy”, J. Mater. Sci., Vol.30 ,1995, pp. 1698-1708.
54. S. Murali, K. S. Raman and K. S. S. Murthy, “Effect of magnesium, iron(impurity) and solidification rates on the fracture toughness of Al-7Si-0.3Mg casting alloy”, Mater. Sci. Eng. A, Vol.151, 1992, pp. 1-10.
55. P. S. Wang, S. L. Lee, J. C. Lin and M. T. Jahn, “Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace Be”, J. Mater. Res., Vol.15 ,2000, pp. 2027-2035.
56. W. Ames and A. T. Alpas, “Wear mechanisms in hybrid composites of graphite-20pct SiC in A356 aluminum alloy”, Metall. and Mater. Trans. A, Vol. 26, 1995, pp. 85-98.
57. H. L. Lee, W. H. Lu and S. L. Chan, “Abrasive wear of powder metallurgy Al alloy 6061-SiC partical”, Wear, Vol.159, 1992, pp. 223-231.
58. F. T. Lee, J. F. Major and F. H. Samuel, “Effect of silicon particles on the fatigue crack growth characteristics of Al-12Si-0.35Mg-(0-0.02)Sr casting alloys”, Metall. Mater. Trans. A ,Vol. 26 ,1995, pp. 1553-1570.
59. B. N. Pramila Bai and S. K. Biswas, “Scanning electron microscopy study of worn Al-Si alloy surfaces”, Wear, Vol. 87 , 1983, pp. 237-249.
60. A. R. Riahi, T. Perry and A. T. Alpas, “Scuffing resistances of Al-Si alloys: effects of etching condition and particle morphology”, Mater. Sci. Eng.A, Vol. 343, 2003, pp.76-81.
61. S. C. Lim, M. Gupta, Y. F. Leng and E. J. Lavemia, “Wear of a spray-deposited hypereutectic aluminium-silicon alloy”, J. Mater. Proc. Technol., Vol. 63,1997, pp. 865-870.
62. B. K. Prasad, K. Venkateswarlu, O. P. Modi, A. K. Jha, S. R. Dasgupta and A. H. Yegneswaran, “Sliding wear behavior of some Al-Si alloys: role of shape and size of Si particles and test conditions”, Metall. Mater. Trans. A Vol. 29 ,1998, pp. 2747-2752.
63. A. E. Segall, J. C. Conway, H. Dang and M. F. Amateau, “Evaluation of the reciprocating- wear behavior of unlubricated hypereutectic Al-Si alloys”, Trib. Trans., Vol.46, 2003, pp. 206-210.
64. V. C. Srivastava and S. N. Ojha, “Microstructure and wear characteristics of spray formed and hot extruded Al-Si alloys”, Mater. Sci. Technol., Vol. 20, 2004, pp.1632-1638.
65. F. Wang, Y. Ma, Z. Zhang, X. Cui and Y. Jin, “A comparison of the sliding wear behavior of a hypereutectic Al-Si alloy prepared by spray-deposition and conventional casting methods”, Wear, Vol. 256, 2004, pp. 342-345.
66. G. Chai and L. Backerud, “Factors affecting modification of Al-Si alloys by adding Sr-containing master alloys”, AFS Trans., Vol. 100, 1992, pp. 847-854.
67. B. L. Tuttle, D. Twarog and E. Daniels, “The effect of trace amounts of antimony on the structure and properties of aluminum alloy A356”, AFS Trans., Vol. 99, 1991, pp. 7-16.
68. E. N. Pan, Y. C. Cherng, C. A. Lin and H. S. Chiou, “Roles of Sr and Sb on silicon modification of A356 aluminum alloys”, AFS Trans., Vol.102, 1994, pp. 609-617.
69. J. E. Gruzleski and B. M. Closset, “The treatment of liquid aluminum -silicon alloys”, American Foundarymen,Society, Inc., Illinois, U.S.A., 1990, pp. 82-89.
70. D. A. Dranger, R. R. Sawtell and M. M. Kersker, “Effects of beryllium on the properties of A357.0 castings”, AFS Trans., Vol.92, 1984, pp.579-586.
71. L. Backerud, G. Chai and J. Tamminen, “Solidification characteristics of aluminum alloys”, Vol. 2 Foundry Alloys, AFS, Skanaluminium, Sweden, 1990, pp.143-150.
72. 劉國雄、林樹均、李勝隆、鄭晃中、葉均蔚編著,工程材料科學,全華圖書,pp. 328-332.
73. 劉國雄、葉均蔚,“高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14期,1985, pp. 1-28.
74. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans., Vol. 97, 1989, pp. 727-743.
75. J. Gauthier, P. R. Louchez and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy”, AFS Int. Cast Metals, Vol. 8, 1995, pp. 91-106.
76. L. E. Marsh and G. Reinenann, AFS Trans., Vol. 87, 1979, pp. 413-422.
77. S. Shivkumar, C. Keller and D. Apelian, “Aging behavior in Al-Si-Mg alloys”, AFS Trans., Vol. 98, 1990, pp. 905-911.
78. S. Shivkumar, S. Ric and Jr. D. Apelian, “Influence of solution parameters and simplified supersaturation treatments on tensile properties of A356 alloy”, AFS Trans., Vol. 98, 1990, pp. 913-922.
79. M. G. Fontana and N. D. Greene, “Corrosion engineering”, 3rd ed., McGraw-Hill, 1986, pp. 51-59.
80. D. A. Jones, “Principles and prevention of corrosion”, 2nd ed., Prentice Hall International, Inc.,1997, pp. 44-524.
81. R. Steigerweld, “Corrosion”, Metals Handbook 9th, American Society for Metals, Vol.13, 1987, pp. 206-207.
82.柯賢文編著,腐蝕及其防治,全華科技圖書公司, 1995, p.143.
83. ASTM G40-82, “Annual Book of ASTM Standards”, Vol. 03.02, 1984, p. 239.
84. A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion”, Wear, Vol.189, 1995, pp. 1-19.
85. K. H. Z. Gahr, “Microstructure and wear of materials”, Chapter 4 Classification of wear process, Elsevier Science Publisher, Amsterdam, The Netherlands, 1987, pp. 80-131.
86. K. G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, 1988, pp.16-18.
87. K. H. Z. Gahr, “Microstructure and wear of materials”, Chapter 6 Sliding wear, Elsevier Science Publisher, Amsterdam, The Netherlands, 1987, pp. 351-495.
88. N. P. Suh, “The delamination theory of wear”, Wear, Vol.25 ,1973, pp. 111-124.
89. N. P. Suh, “An overview of the delamination theory of wear”, Wear, Vol. 44 ,1977, pp. 1-16.
90. ASTM B557-84, Annual Book of ASTM Standards, Vols. 03.01 and 02.02. ,1986.
91. S. Murali, K. S. Raman and K. S. S. Murthy, “The formation of β-FeSiAl5 and Be-Fe phases in Al-7Si-0.3Mg alloy containing Be”, Mater. Sci. Eng. A, Vol.190, 1995, pp. 165-172.
92. S. K. Tang and T. Sritharan, “Morphology of β-AlFeSi intermetallic in Al-7Si alloy castings”, Mater. Sci. Technol., Vol.14, 1998, pp.738-742.
93. J. Barresi, M. J. Kerr, H. Wang and M. J. Couper, “Effect of magnesium, iron and cooling rate on mechanical properties of Al-7Si-Mg foundry alloys”, AFS Trans., Vol. 108, 2000, pp. 563-570.
94. Simensen and T. L. Rolfsen, “Production of π-AlMgSiFe crystals”, Z. Metallkd., Vol. 88, 1997, pp.142-146.
95. D. L. Zhang and L. Zheng, “The quench sensitivity of cast Al-7pct Si-0.4pct Mg alloy”, Metall. Mater. Trans. A, Vol. 27, 1996, pp. 3983-3991.
96. D. B. Williams and C. B. Carter, “Transmission electron microscopy, a textbook for material science”, Plenum Pres, New York, 1996, pp. 9-11.
97. G. Riontino and S. Abis, “Scanning electrical resistivity (SER) study of phase transformations in an Al-Cu alloy”, Philos. Mag. B B64, 1991, pp. 447-461.
98. M. Drouzy, S. Jacob and M. Richard: “Interpretation of tensile results by means of quality index and probable yield strength”, AFS Int. Cast Metals, 1980, pp. 43-50.
99. W. S. Tait, Ph. D., “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, 1994, pp. 38-40.
100. Y. B. Yu, S. S. Kim, Y. S. Lee and J. W. Lee, “Phenomenological observations on mechanical and corrosion properties of thixoformed 357 alloys: a comparision with permanent mold cast 357 alloys”, Metall. Mater. Trans. A , Vol.33 , 2002, pp. 1399-1412.
101. L. Pedersen and L. Arnberg, “The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in Al-Si-Mg foundry alloys”, Metall. Mater. Trans. A , Vol.32A , 2001, pp. 525-532.
102. P. Y. Zhu and Q. Y. Liu, “Spheroidization of eutectic silicon in Al-Si alloys”, AFS Trans.,Vol. 93 ,1985, pp. 609-614.
103. J. Clarke and A. D. Sarkar, “Wear characteristics of as-cast binary aluminium-silicon alloys”, Wear, Vol. 54 ,1979, pp. 7-16.
104. R. A. Saravanan, J. M. Lee and S. B. Kang, “Dry sliding wear behavior of A356-15﹪SiC composites under controlled atmospheric conditions”, Metall. Mater. Trans. A , Vol.30 , 1999, pp. 2523-2538.
105. M. R. Rosenberger, C. E. Schvezov and E. Forler, “Wear of different aluminum matrix composites under conditions that generate a mechanically mixed lay”, Wear, Vol. 259, 2005, pp. 590-601.
106. X. Y. Li and K. N. Tandon, “Mechanical mixing induced by wear of an Al-Si alloy against M2 steel”, Wear, Vol. 225-229, 1999, pp. 640-648.
107. S. L. Rice, H. Nowotny and S. F. Wayne, “Wear of materials”, ASME, 1981, pp. 47-52.
108. R. L. Deuis, C. Subramanian and J. M. Yellup, “Dry sliding wear of aluminium composites- a review”, Comp. Sci. Technol., Vol.57, 1997, pp. 415-435.
109. A. R. Riahi and A. T. Alpas, “The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites”, Wear, Vol. 251, 2001, pp.1396-1407.
110. X. Y. Li and K. N. Tandon, “Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite”, Wear, Vol. 245 ,2000, pp.148-161.
111. B. Venkataraman and G. Sundararajan, “Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs”, Wear, Vol. 245 ,2000, pp. 22-38.
112. L. Ceschini, C. Bosi, A. Casagrande and G. L. Garagnani, “Effect of thermal treatment and recycling on the tribological behaviour of an Al Si Mg-SiCp composite”, Wear, Vol. 251,2001, pp.1377-1385.
113. J. P. Tu and Y. Z. Yang, “Tribological behaviour of Al18B4O33 whisker reinforced hypoeutectic Al-Si-Mg matrix composites under dry sliding conditions”, Comp. Sci. Technol., Vol.60, 2000, pp.1801-1809.
114. O. P. Modi, B. K. Prasad, A. H. Yegneswaran and M. L. Vaidya, “Dry sliding wear behaviour of squeeze cast aluminium alloy-silicon carbide composites”, Mater. Sci. Eng. A, Vol.151, 1992, pp. 235-245.
115. J. Zhang and A. T. Alpas, “Transition between mild and severe wear in aluminium alloys”, Acta Mater. Vol. 45,1997, pp.513-528.
116. S. Das, D. P. Mondal, S. Sawla and S. Dixit, “High stress abrasive wear mechanism of LM13-SiC composite under varying experimental conditions”, Metall. Mater. Trans. A , Vol.33 , 2002, pp. 3031-3044.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2006-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明