博碩士論文 90343013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.172.111.71
姓名 葉竣達(Chun-ta Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 液體微熱交換器之熱傳增強研究
(A study of Enhanced Heat Tansfer in Micro Heat Exchanger for Liquid Cooling)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析
★ 不同參數對燒結式熱管性能之影響研究★ 使用不同擋板集管之多通道熱交換器流動分佈觀察
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文以熱傳增強設計並製作出長寬50 mm x 50mm,厚度2 mm之微熱交換器,包括:山型紋微熱交換器、長斷續式鰭片微熱交換器、短斷續式鰭片微熱交換器,與直線流道微熱交換器相比較;並將斷續式鰭片加以流線化之翼形與梭形斷續式鰭片,與矩形斷續式鰭片比較,測試分析微熱交換器的性能。
斷續式鰭片與山型紋的熱增強設計皆可有效降低微熱交換器的熱阻,短斷續鰭片微熱交換器之熱阻稍低於長斷續鰭片微熱交換器,而以山型紋微熱交換器中心溫度與熱阻最低,增強效果最明顯。但是如果以所需的泵動力來看,山型紋微熱交換器所需泵動力最高。斷續式鰭片微熱交換器也有不錯的熱傳增強效果,但相對壓降較小。
流線型斷續鰭片長度同為3.0 mm時,翼形鰭片摩擦係數較矩形斷續鰭片降低20 %,紐賽數只降低10%以內。鰭片長度1.0 mm之翼形鰭片微熱交換器在相同泵動力下熱阻最低,鰭片長度0.6 mm之翼形鰭片微熱交換器因為鰭片頂端過度側蝕,熱傳性能因此下降。
梭形鰭片微熱交換器有兩個不同的排列方式,其一與矩形和翼形的鰭片排列方式同為平行錯置之斷續式排列,另一種則將錯置部分重疊使鰭片在熱交換器表面上更為密集。錯置部分重疊使中心溫度約降低2.8 oC,熱阻降低約13 %。原因在於提前錯置的斷續排列鰭片流道變窄後,相同流量下局部流速上升而提高熱傳係數,但壓降較原本的斷續排列增加46%。部分重疊斷續排列之梭形鰭片微熱交換器可藉流道縮小與鰭片數增加降低熱阻,但相對壓降增加較多。
摘要(英) Three micro heat exchangers for use in a liquid cooling system with a long offset strip, short offset strip, and chevron flow path based on the tra-ditional heat transfer enhancement concepts were designed and tested. A straight channel heat exchanger was also made for comparison. This study also follows the offset strip flow path design, replaces rectangle strips by airfoil and shuttle type strips to reduce its flow resistance.
The test results show that the chevron channel heat exchanger pro-vides the lowest thermal resistance. However, its pressure drop is also the highest, approximately five times higher than that for other three heat ex-changers. The offset strip heat exchangers provide better thermal perform-ance than does the straight channel heat exchanger. The performance of the heat exchanger with the shorter strip is better than that of heat exchanger with longer strip.
The effects of strip length, strip type and strip arrangement were con-sidered for heat transfer performance comparison. The test results show that the heat exchangers with shorter strip length and narrower strip space provide better heat transfer performance.
The short airfoil strips heat exchanger with 1.0 mm strip length per-formed the lowest thermal resistance among all types of heat exchangers. Because of its narrow flow paths, the performance of the overlapped shuttle strip heat exchanger is better than that of the offset shuttle, long airfoil, and rectangle strip heat exchangers. However, the space between strips is lim-ited by the fabrication techniques and is difficult to be made narrower by the method of chemical etching.
關鍵字(中) ★ 熱傳增強
★ 山型紋
★ 翼形
★ 梭形
★ 水冷
★ 微熱交換器
關鍵字(英) ★ micro heat exchangers
★ liquid cooling
★ heat transfer enhancement
★ chevron
★ airfoil
★ shuttle
論文目次 目 錄
頁次
摘 要………………………………………………………………..i
Abstract…………………………………………………………….ii
目 錄……………………………………………………………….iii
表 目 錄……………………………………………………………vii
圖 目 錄……………………………………………………………viii
符 號 說 明………………………………………………………xiv
第一章 前言……………………………………………………………1
1.1 研究背景與動機…………………………………………………1
1.2 液體冷卻之研究發展………………………………………………2
1.3 研究目的……………………………………………………………3
第二章 文獻回顧……………………………………………………12
2.1 微流道壓降與熱傳……………………………………………12
2.2 微熱交換器……………………………………………………13
2.2.1 直線流道微熱交換器…………………………………………13
2.2.2 進出口與流動分布……………………………………………15
2.2.3多層微流道…………………………………………………….17
2.2.4 增強型微流道……………………………………19
2.2.4.1 斷續型鰭片微流道………………………………20
2.2.4.2 其它…………………………………………………22
2.3 微熱交換器製程……………………………………………22
2.3.1 微流道製造方式…………………………………………22
2.3.2 微熱交換器接合方式……………………………………24
2.4 總結…………………………………………………………24
第三章 微熱交換器設計與製作…………………………………46
3.1 熱傳增強技術…………………………………………………46
3.1.1 斷續鰭片熱傳增強原理……………………………………46
3.1.2 山型紋熱傳增強原理………………………………………47
3.2 微熱交換器設計………………………………………………48
3.2.1 直線式流道微熱交換器………………………………………48
3.2.2 山型紋微熱交換器……………………………………………49
3.2.3 斷續式鰭片微熱交換器………………………………………49
3.2.4 流線型鰭片微熱交換器………………………………………49
3.2.4.1 流線型鰭片原理與背景……………………………50
3.2.4.2 鰭片數值分析………………………………………51
3.2.4.3 流線型鰭片設計……………………………………52
3.3 微熱交換器製作……………………………………………53
3.3.1 蝕刻基本原理………………………………………………54
3.3.2 板片尺寸量測………………………………………………55
3.3.3 板片接合………………………………………………55
第四章 實驗系統與方法……………………………………………87
4.1 實驗系統…………………………………………………………87
4.1.1 微熱交換器……………………………………………………87
4.1.2 加熱加壓系統…………………………………………………87
4.1.3 冷卻循環系統…………………………………………………88
4.1.4 量測儀器設備…………………………………………………88
4.1.4.1 溫度量測………………………………………………88
4.1.4.2 差壓測量………………………………………………88
4.1.4.3 流量測量………………………………………………89
4.1.4.4 熱電偶溫度讀取器……………………………………89
4.1.4.5 電熱棒、直流電源供應器……………………………89
4.1.4.6 冷卻水循環泵…………………………………………89
4.1.4.7 恆溫槽…………………………………………………89
4.1.4.8 資料擷取系統…………………………………………90
4.2 實驗方法……………………………………………………90
4.3 數據換算……………………………………………………91
4.3.1加熱瓦數…………………………………………………91
4.3.2熱阻…………………………………………………………91
4.3.3泵動力………………………………………………………91
第五章 實驗結果與討論………………………………………101
5.1 微熱交換器壓降性能……………………………………………101
5.1.1 熱傳增強微熱交換器壓降…………………………………101
5.1.1.1 斷續式鰭片微熱交換器…………………………102
5.1.1.2 山型紋與直線流道微熱交換器…………………102
5.1.1.3 斷續式鰭片、山型紋與直線流道微熱交換器……102
5.1.2 流線型斷續鰭片微熱交換器壓降.………………………103
5.1.2.1 矩形、翼形與梭形斷續鰭片微熱交換器………103
5.1.2.2 矩形與翼形斷續鰭片微熱交換器.………………104
5.1.2.3 梭形斷續鰭片微熱交換器.………………………104
5.1.2.4 翼形斷續鰭片微熱交換器.………………………104
5.2 微熱交換器熱傳性能……………………………………105
5.2.1 熱傳增強型微熱交換器熱傳性能……………………105
5.2.1.1 斷續式鰭片、山型紋與直線流道微熱交換器溫度分
布………………………………………………………………105
5.2.1.2 直線流道、斷續式鰭片與山型紋微熱交換器中心溫
度………………………………………………………………106
5.2.1.3 直線流道、斷續式鰭片與山型紋微熱交換器熱阻106
5.2.2 低壓降型微熱交換器熱傳………………………………106
5.2.2.1 矩形、翼形與梭形斷續鰭片微熱交換器…………106
5.2.2.2 矩形、翼形斷續鰭片微熱交換器………………107
5.2.2.3 梭形斷續鰭片微熱交換器………………107
5.2.2.4 翼形斷續鰭片微熱交換器………………107
第六章 討論……………………………………………………133
6.1 微熱交換器性能比較……………………………………133
6.1.1 熱傳增強型微熱交換器…………………………133
6.1.2 低壓降型微熱交換器………………………………133
6.2 微熱交換器之應用……………………………………135
第七章 結論…………………………………………………142
參考文獻………………………………………………………143
附錄………………………………………………………………150
參考文獻 Agostini, B., Fabbri, M., Park, J. E., Wojtan, L., Thome, J. R., and Michel, B., 2007, “State of the Art of High Heat Flux Cooling Technologies,” Heat Transfer Engineering, Vol. 28, no. 4, pp. 258-281.
Ameel, T. A., Warrington, R. O., Wegeng, R. S., and Drost, M. K., 1997, “Miniaturization Technologies Applied to Energy Systems,” Journal of Energy Conversion and Management, Vol. 38, pp. 969-982.
Ashman, S., and Kandlikar, S. G., 2006, ”A Review of Manufacturing Processes for Microchannel Heat Exchanger Fabrication,” Proceed-ings of the 4th International Conference on Nanochannels, Micro-channels and Minichannels, June 19-21, Limerick, Ireland, Paper No. ICNMM2006-96121.
Bar-Cohen, A., 1987, “Thermal Management of Air- and Liquid-Cooled Multichip Modules,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-10, No. 2, pp. 159-175.
Bowman, W. J., and Maynes, D., 2001, “A Review of Micro Heat Ex-changer Flow Physics, Fabrication Methods and Application,” Inter-national Mechanical Engineering Congress and Exhibition (IMECE 2001), New York, HTD-24280, pp. 385-407.
Colgan, E. G., Furman, B., Gaynes, M., Graham, W. S., LaBianca, N. C., Magerlein, J. H., Polastre, R.J., Rothwell, M. B., Bezama, R. J., Choudhary, R., Marston, K. C., Toy, H., Wakil, J., Zitz, J. A., and Schmidt, R.,R., 2007, ”A Practical Implementation of Silicon Micro-channel Coolers for High Power Chips,” IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 2, pp. 218-225.
Commenge, J. M., Falk, L., Corriou, J. P., and Matlosz, M., 2002, “Optimal Design for Flow Uniformity in Microchannel Reactors,” AIChE Jour-nal, Vol. 48, pp. 345-358.
Copeland, D., Takahira, H., and Nakayama, W., 1995, “Manifold Micro-channel Heat Sinks; Theory and Experiments,” Thermal Science and Engineering, Vol. 3, No. 2, pp. 9-15.
Curamik Electronics GmbH, 2005, PolarXstream® - Cooler Data Sheet.
Dixit, P., Lin, N., Miao, J., Wong, W. K., Choon, T. K., 2008, “Silicon Nanopillars Based 3D Stacked Microchannel Heat Sinks Concept for Enhanced Heat Dissipation Applications in MEMS Packaging,” Sen-sors & Actuators : A Physical, Vol. 141, pp. 685-694.
Exel, K., and Schulz-Harder, J., 1998, ” Water cooled DBC Direct Bonded Copper Substrates,” Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (IECON '98), Aachen, Ale-manha, Vol. 3, pp. 2350-2354.
Focke, W. W., and Knibble, P. G., 1984, “Flow Visualization in Parallel Plate Ducts with Corrugated Walls,” CSIR Report CENC M-519.
Focke, W. W., Zachariades, J., and Oliver, I., 1985, “The Effect of Corruga-tion Onclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers,” International Journal of Heat and Mass transfer, Vol. 28, pp. 1469 - 1479.
Gschwind, P., Gaiser, G., Zimmerer, C., and Kottke, V., 2001, “Transport Phenomena in Micro Heat Exchangers with Corrugated Walls,” Mi-croscale Thermophysical Engineering, Vol. 5, No. 4, pp. 285-292.
Harpole, G. M., and Eninger, J. E., 1991, “Micro-channel Heat Exchanger Optimization,” Proceedings of the 7th IEEE Semi-Therm Symposium, Phoenix, AZ, pp. 59-63.
Holman, J. P., 2001, Experimental Methods for Engineers, McGraw-Hill, New York.
Holman, J. P., 2002, Heat Transfer, 9th ed., McGraw-Hill, New York.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat Mass Transfer, 4th ed., John Wiley & Sons, New York.
Intel Corp., 2007, Intel○R Core TM 2 Extreme Quad-Core Processor QX6800 - Adopting Intel Advanced Liquid Cooling Technology Reference De-sign.
Jeffers, N., Punch, J., and Walsh, E., 2007, “An Experimental Characterisa-tion of Miniature Scale Cold Plates for Electronics Cooling Applica-tions,” ASME-JSME Thermal Engineering and Summer Heat Transfer Conference, HT2007-321537, Vancouver, BC, Canada, July 8~12.
Kandlikar, S. G., and Grande, W. J., 2004, ”Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cool-ing-Thermohydraulic Performance Enhancement and Fabrication Technology,” Heat Transfer Engineering, Vol. 25, No. 8, pp. 5-16.
Kandlikar, S. G., and Upadhye, H. R., 2005, ”Extending the Heat Flux Limit with Enhanced Microchannels in Direct Single Phase Cooling of Computer Chips,” Proceedings of 21st IEEE SEMI-THERM Sympo-sium, San Jose, CA, pp. 8-15.
Kishimoto, T., and Sasaki, S., 1987, “Cooling Characteristics of Dia-mond-Shaped Interrupted Cooling Fin for High-Power LSI Devices,” Electronics Letters, Vol. 23, No. 9, pp. 456-457.
Kosar, A., Mishra, C., and Peles, Y., 2005, “Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins,” Journal of Fluids Engineering, Vol. 127, pp. 419-430.
Kosar, A., and Peles, Y., 2006, “Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink,” Journal of Heat Transfer, Vol. 128, pp. 121-131.
Kosar, A., and Peles, Y., 2007, “Micro Scale Pin Fin Heat Sinks : Paramet-ric Performance Evaluation Study,” IEEE Transactions on Compo-nents and Packaging Technologies, Vol. 30, No. 4, pp. 855-865.
Krishnamoorthy, C., and Ghajar, A. J., 2007, “Single-Phase Friction Factor in Micro-Tubes: A Critical Review of Measurements, Instrumentation and Data Reduction Techniques from 1991-2006,” Proceedings of the 5th International Conference on Nanochannels, Microchannels and Minichannels, June 18-20, Puebla, Mexico.
Kroo, I., 2007, Applied Aerodynamics — A Digital Textbook, published on CD-ROM by Desktop Aeronautics, Inc., Version 5.0.
Lee, P. S., Ho, J. C., and Xue, H., 2002, “Experimental Study on Laminar Heat Transfer in Microchannel Heat Sink,” Proceedings of the 8th In-tersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM '02), pp. 379-386.
Lei, N., Skandakumaran, P., and Ortega, A., 2006, “Experiments and Mod-eling of Multilayer Copper Minichannel Heat Sinks in Single-Phase Flow,” Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM '06), pp. 9-18.
Lin, T.-Y., and Yang, C.-Y., 2007, “An Experimental Investigation on Forced Convection Heat Transfer Performance in Micro Tubes by The Method of Liquid Crystal Thermography,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 4736-4742.
Lu, M.-C., B. C. Yang, and Wang, C.-C., 2004, ” Numerical Study of Flow Mal-distribution on the Flow and Heat Transfer for Multi-channel Cold-Plates,” Proceedings of 20th IEEE SEMI-THERM Symposium, , San Jose, CA, pp. 205-212.
Lu, M.-C., and Wang, C.-C., 2006, ”Effect of the Inlet Location on the Per-formance of Parallel-Channel Cold-Plate,” IEEE Transactions on Components and Packaging Technologies, Vol. 29, No. 1, pp. 30-38.
Missaggia, L. J., Walpole, J. N., Liau, Z. L., and Phillips, R. J., 1989, “Mi-crochannel Heat Sinks for Two-Dimensional High-Power-Density Diode Laser Arrays,” IEEE Journal of Quantum Electronics, Vol. 25, No. 9, pp. 1988-1992.
Munson, B. R., Young, D. F., and Okiishi, T. H., 1998, Fundamental of Fluid Mechanics, 3rd ed., John Wiley & Sons, New York.
Patterson, M. K., Wei, X. J., Joshi, Y., and Prasher, R., 2004, “Numerical Study of Conjugate Heat Transfer in Stacked Microchannels,” Pro-ceedings of the 9th Intersociety Conference on Thermal and Ther-momechanical Phenomena in Electronic Systems (ITHERM '04), Vol. 1, pp. 372-380.
Phillips, R. J., 1987, Forced Convection, Liquid Cooled, Microchannel Heat Sinks, M.S. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
Prasher, R. S., Chang, J.-Y., Sauciuc, I., Narasimhan, S., Chau, D., Chrysler, G., Myers, A., Prstic, S., and Hu, C., 2005, “Nano and Micro Tech-nology-Based Next-Generation Package-Level Cooling Solutions,” Intel Technology Journal, Electronic Package Technology Develop-ment, Vol. 9, No. 4, pp. 285–296.
Prasher, R. S., Dirner, J., Chang, J.-Y., Myers, A., Chau, D., He, D., and Prstic, S., 2007, “Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid,” Journal of Heat Transfer, Vol. 129, pp. 141-153.
Qu, W., and Mudawar, I., 2002, “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549-2565.
Reynell, M., 1990, “Advanced Thermal Analysis of Packaged Electronic Systems Using Computational Fluid Dynamics Techniques,” Com-puter-Aided Engineering Journal, Vol. 7, pp. 104-106.
Ryu, J. H., Choi, D. H., and Kim, S. J., 2003, “Three-Dimensional Optimi-zation of A Manifold Microchannel Heat Sink,” International Journal Heat Mass Transfer, Vol. 46, pp. 1533-1562.
Saini, M., and Webb, R. L., 2003, “Heat Rejection Limits of Air-Cooled Plane Fin Heat Sinks for Computer Cooling,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp. 71-79.
Steinke, M. E., and Kandlikar, S. G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flow,” Proceedings of the 2nd International Conference on Minichannels and Microchannels, Rochester, New York, Paper No. ICMM2004-2328.
Steinke, M. E., and Kandlikar, S. G., 2006, “Single-phase Liquid Heat Transfer in Plain and Enhanced Microchannels,” Proceedings of the 6th International Conference on Minichannels and Microchannels, Rochester, New York, Paper No. ICMM2006-96227.
Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S., and Hashimoto, I., 2004, “CFD-Based Optimal Design of Manifold in Plate-Fin Mi-crodevices,” Chemical Engineering Journal, Vol. 101, pp. 397-402.
Tuckerman, D. B., and Pease, R. F. W., 1981, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Letters, Vol. EDL-2, No. 5, pp. 126-129.
Tuckerman, D. B., 1984, Heat-Transfer Microstructures for Integrated Cir-cuits, Ph.D. thesis, Department of Electrical Engineering, Standford University, Palo Alto, CA.
Webb, R. L., and Kim, N.-H, 2005, Principles of Enhanced Heat Transfer, 2nd ed., Taylor & Francis, New York.
Wei, X. J., 2004, Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronics Devices, Ph.D. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
Wei, X. J., and Joshi, Y., 2004, “Stacked Microchannel Heat Sinks for Liq-uid Cooling of Microelectronic Components,” Journal of Electronic Packaging, Vol. 126, pp. 60-66.
Wei, X. J., Joshi, Y., and Patterson, M. K., 2007, ”Experimental and Nu-merical Study of a Stacked Microchannel Heat Sink for Liquid Cool-ing of Microelectronic Devices,” Journal of Heat Transfer, Vol. 129, pp. 1432-1444.
Yang, C.-Y., and Lin, T.-Y., 2007, “Heat Transfer Characteristics of Water Flow in Microtubes,” Experimental Thermal and Fluid Science, Vol. 32, pp. 432-439.
Zhang, H. Y., Pinjala, D., Wong, T. N., and Joshi, Y. K., 2005, “Develop-ment of Liquid Cooling Techniques for Flip Chip Ball Grid Array Packages With High Heat Flux Dissipations,” IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 1, pp. 127-135.
王啟川,2001,熱交換器設計,五南圖書出版公司,台北。
郭思齊,2006,液體冷卻系統中之微熱交換器性能分析與改良,國立中央大學機械工程研究所碩士論文,中壢。
賴耿陽,2000,金屬腐蝕加工技術,復漢,台南。
劉瑋輯,2005,微熱交換器之設計與性能測試,國立中央大學機械工程研究所碩士論文,中壢。
指導教授 楊建裕(Chien-yuh Yang) 審核日期 2008-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明