博碩士論文 90344005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.137.218.215
姓名 羅偉誠(Wei-Chen Luo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究
(Combined effect of concentration of Au and Cu, and volume effect on the reaction between Sn-Ag-Cu solder and Au/Ni surface finish)
相關論文
★ 薄型化氮化鎵發光二極體在銅填孔載具的研究★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究
★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究★ N-GaN表面之六角錐成長機制及其光學特性分析
★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用
★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立★ 通過水熱和溶劑熱法合成銅奈米晶體之研究
★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究
★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究
★ 金濃度對球矩陣構裝銲點剪力強度影響之研究★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究
★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討★ 錫銅無鉛銲料與Ni基材界面反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 探討Sn-Ag-Cu無鉛銲料與Au/Ni基板表面處理層(surface finish)之間的反應是非常複雜的。因為其中包含了(1)不同的銲錫球球徑760、500、300微米(2)搭配著不同孔徑的銲墊600、425、250微米(3)銲墊上方不同厚度的Au表面處理層0、0.6、3微米(4)不同的銲錫球組成Sn-3Ag-xCu,X= 0.3 ~ 0.7(5)兩種迴銲時間,共五大類的變因。
本研究的結果顯示,工業界慣用的銲料與基板在銲接過程中,銲料所具有的Cu濃度,依然是左右界面反應的重要角色。即使微量改變銲料的Cu濃度,將會使界面上呈現不同的介金屬種類與生長型態。當Cu濃度由0.3 wt.%逐漸增加至0.7 wt.%,迴銲後界面生成物與型態將由單一的Ni3Sn4相,轉變為Ni3Sn4與Cu6Sn5共存,再轉變為單一的Cu6Sn5相。Cu些微改變,界面反應截然不同。
銲墊上Au/Ni表面處理層的Au厚度也對銲接反應有重要的影響。當Au表面處理層厚度為3 微米時,造成Sn-3Ag-0.4Cu反應界面,產生大量Cu6Sn5相介金屬剝離情形,此現象於三種不同大小的銲錫球與銲墊搭配均會發生,且不論反應時間為90或300秒。由此可見,過厚的Au層將會造成介金屬脫離界面,並間接使得銲點可靠度發生問題。
值得一提的是,即使銲墊上方Au層厚度薄如0.6微米,也會使得直徑300微米的銲錫球,於90秒迴銲後,界面處介金屬中產生許多清晰可見的孔洞。這些孔洞被銲料所填滿,並隨著反應時間增長而變大。相信只要施以足夠的反應時間,孔洞上方的介金屬層也會完全脫離界面而進入銲料內部。
上述結果顯示,介金屬剝離的現象會隨著Au層厚度的增加而趨於嚴重。且隨著銲點縮小,即便Au層厚度保持不變,也會使得銲料中具有相對較高的Au濃度,Au濃度越高越容易致使介金屬剝離。因此由本實驗結果可以得知,為了確保銲點的品質,對於銲料組成的選擇,以及Au表面處理層厚度的控制應該要非常謹慎。為了避免此介金屬剝離現象的發生,銲接反應時應注意(1)盡量使用Au層厚度較薄的表面處理層,(2)盡量選用Cu濃度較高的銲料,避開剝離反應發生的區間,(3)以最短但容許範圍內的迴銲時間進行迴銲。
摘要(英) The soldering reactions between the Au/Ni surface finish and several
Sn-3Ag-xCu (x= 0.3, 0.4, 0.5, 0.6, and 0.7 wt. %) solders were investigated. The
varied volume of the solder balls with 760, 500 and 300 µm diameter were used on
the 0, 0.6 and 3 µm thick Au lay having a circular area with 600, 425 and 250 µm. It
was found that interfacial reactions were controlled by a number of factors, including
the concentration of Au and Cu, the reflow time, and paired the solder volume and
pad area. With increasing Cu concentration, the reaction product at the interface
switched from Ni3Sn4-based to Cu6Sn5-based + Ni3Sn4-based, then to Cu6Sn5-based.
In addition, the Au thickness was found to have a strong influence on the
microstructures of the reaction products. After Sn-3Ag-0.4Cu solder ball reflowed on
a 3 µm Au layer at 235°C for 90 sec, a Cu6Sn5-based layer had departed from the
solder/pad interface and moved towards the solder joint. In addition, a layer of solder
located between detached Cu6Sn5-based and adhered Ni3Sn4-based layer. Similar
phenomenon occurred on smaller size of solder as 500 and 300 µm. It deserved to be
mentioned that even 0.6 µm-thick Au layer can cause a series voids formed between
(Ni, Cu)3Sn4 and (Cu, Ni, Au)6Sn5 layers at the interface. Due to production of Au
concentration had been raised over an unsafe level. These voids indeed weaken the
Sn-3Ag-0.4Cu solder joints and lead serious reliability problem further. As the device
size shrinks, precise control of solder composition and thickness of surface finish
should be more critical.
關鍵字(中) ★ 表面處理層 關鍵字(英) ★ surface finish
論文目次 Contents
Abstract (Chinese)
Abstract (English)
List of Tables
Figure Caption
1. Introduction…………………………………………………………………………1
2. Metallurgical reaction of Sn-Ag-Cu solders with Ni surface finishes…………….13
2.1 760 µm-diameter solder ball reflowed for 90 sec…………………………..14
2.2 500 µm-diameter solder ball reflowed for 90 sec…………………………...16
3. Metallurgical reaction of Sn-Ag-Cu solders with Au/Ni surface finishes…………20
0.6 Ⅰ -µm-thick Au layer………………………………………………………….…20
3.1 760 µm-diameter solder ball reflowed for 90 sec…………………………..22
3.2 760 µm-diameter solder ball reflowed for 300 sec…………………………23
3.3 300 µm-diameter solder ball reflowed for 90 sec………………………..…25
3.4 300 µm-diameter solder ball reflowed for 300 sec…………………………27
3 Ⅱ -µm-thick Au layer………………………………………………………………33
3.5 760 µm-diameter solder ball reflowed for 90 and 300 sec…………………34
3.6 500 µm-diameter solder ball reflowed for 90 and 300 sec……………….…38
4. Conclusion…………………………………………………………………………51
Reference……………………………………………………………………………..59
參考文獻 1. I. Anderson, “Sn-Ag-Cu: A lead-free solder for board applications”, in Proc. NEPCON West 96, 27-29 Feb. 1996, Anaheim, CA, USA, Reed Exhibition, Norwalk, CT, USA, 2, p. 882, 1996.
2. C. M. Miller, I. E. Anderson, and J. F. Smith, “ A viable Sn-Pb solder substitute: Sn-Ag-Cu”, Journal of Electronic Materials, 23, p. 595, 1994.
3. W. G. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a molten Sn-Lead solder”, Welding Journal Research suppliment, 48, p. 551s, 1969.
4. J. Bath, C. Handwerker, and E. Bradley, Circuits Assembly 5 , 2000.
5. I. E. Anderson, T. E. Bloomer, R. L. Terpstra, J. C. Foley, B. A. Cook, and J. L. Harringa, Advanced Brazing and Soldering Technologies, 2000.
6. W. T. Chen, C. E. Ho, and C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders,” Journal of Materials Research, 17, p. 263, 2002.
7. C. E. Ho, Y. L. Lin, and C. R. Kao, “Strong effect of Cu concentration on the reaction between lead-free microelectronic solders and Ni,” Chemistry of Materials, 14, p. 949, 2002.
8. C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni,” Journal of Electronic Materials, 31, p. 548, 2002.
9. L. C. Shiau, C. E. Ho, and C. R. Kao, “Reactions between SnAgCu lead-free solders and Au/Ni surface finish in advanced electronic packages,” Soldering and Surface Mount Technology, 14, p. 25, 2002.
10. Y. L. Lin, W. C. Luo, Y. H. Lin, C. E. Ho, and C. R. Kao, “Effects of the gold thickness of the surface finish on the interfacial reactions in flip-chip solder joints,” Journal of Electronic Materials, 33, p. 1092, 2004.
11. C. E. Ho, L. C. Shiau, and C. R. Kao, “Inhibiting the formation of (Au1–xNix)Sn4 and reducing the consumption of Ni metallization in solder joints,” Journal of Electronic Materials, 31, p. 1264, 2002.
12. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, “Reflow soldering and isothermal solid-State aging of Sn-Ag eutectic solder on Au/Ni surface finish,” Journal of Electronic Materials, 30, p. 1152, 2001.
13. C. E. Ho, R.Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, “ Formation and resettlement of (AuxNi1–x)Sn4 in solder joints of Ball-Grid-Array packages with the Au/Ni surface finish,” Journal of Electronic Materials, 29, p. 1175, 2000.
14. A. M. Minor and J. W. Morris, Jr., “Inhibiting growth of the Au0.5Ni0.5Sn4 Intermetallic layer in Pb-Sn solder joints reflowed on Au/Ni metallization,” Journal of Electronic Materials, 29, p. 1170, 2000.
15. E. Gebhardt, G. Petzow, Z. Metallkde, 50, p.597, 1959.
16. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys,” Journal of Electronic Materials, 29, p. 1122, 2000.
17. JEIDA. “Challenges and efforts toward commercialization of lead-free -Solder road map 2000 for commercialization of lead-free solder”, ver. 1.3, July 2000.
18. http://www.nemi.org/
19. T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li, “Reactions of lead-free solders and CuNi metallizations,” Journal of Electronic Materials, 29, p. 1194, 2000.
20. Minna Arra, Dongkai Shangguan, Eero Ristolainen, and Toivo Lepisto, “Solder balling of lead-free solder pastes,” Journal of Electronic Materials, 31, p. 1130, 2002.
21. C. S. Chi, H. S. Chang, K. C. Hsieh, and C. L. Chung, “Interfacial microstructure of Pb-free and Pb-Sn solder balls in the Ball-Grid-Array package,” Journal of Electronic Materials, 31, p. 1203, 2002.
22. W. K. Choi, S. K. Kang, and D. Y. Shih, “A study of the solder volume on the interfacial reactions in solder joint using the differential scanning calorimetry technique,” Journal of Electronic Materials, 31, p. 1283, 2002.
23. S. Y. Hwang, J. W. Lee, and Z. H. Lee, “Microstructure of a lea-free composite solder produced by an in-situ process,” Journal of Electronic Materials, 31, p. 1304, 2002.
24. C. Y. Liu, and S. J. Wang, “Prevention of spalling by the self-formed reaction barrier layer on controlled collapse chip connections under bump metallization,” Journal of Electronic Materials, 32, p. L1, 2003.
25. Y. D. Jeon, Sabine Nieland, Andreas Ostmann, Herbert Reichl, and K. W. Paik, “A study of interfacial reactions between electroless Ni-P under bump metallization and 95.5Sn-4.0Ag-0.5Cu alloy,” Journal of Electronic Materials, 32, p. 548, 2003.
26. K.Y. Lee, and M. Li, “Interfacial microstructure evolution in Pb-free solder systems,” Journal of Electronic Materials, 32, p. 906, 2003.
27. J. Y. Park, C. U. Kim, Ted Carper, and Viswanadham Puligandla, “Phase equilibria studies of Sn-Ag-Cu eutectic solder using differential cooling of Sn-3.8Ag-0.7Cu alloys,” Journal of Electronic Materials, 32, p. 1297, 2003.
28. J. Y. Park, Rajendra Kabade, C. U. Kim, Ted Carper, Steven Dunford, and Viswanadham Puligandla, “Influence of Au addition on the phase equilibria of near-eutectic Sn-3.8Ag-0.7Cu Pb-free solder alloy,” Journal of Electronic Materials, 32, p. 1474, 2003.
29. C. S. Hung, J. G. Duh, and Y. M. Chen, “Metallurgical reaction of the Sn-3.5Ag solder and Sn-37Pb solder with Ni/Cu under-bump metallization in a flip chip package,” Journal of Electronic Materials, 32, p. 1509, 2003.
30. P. L. Wu, M. K. Hung, C. P. Lee, and S. R. Tzan, “Effects of different printed-circuit-board surface finishes formation and growth of intermetallics at thermomechanically fatigues, small outline J leads/Sn-Ag-Cu interfaces,” Journal of Electronic Materials, 33, p. 157, 2004.
31. M. D. Cheng, S. Y. Chang, S. F. Yen, and T. H. Chuang, “Intermetallic compounds formed during the reflow and aging Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder ball grid array packages,” Journal of Electronic Materials, 33, p. 171, 2004.
32. G. Ghosh, “Reactive interdiffusion of lead-free solders and Ti/Ni/Ag thin film metallizations,” Journal of Electronic Materials, 33, p. 229, 2004.
33. C. S. Hung, G. Y. Jang, and J. D. Duh, “Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps,” Journal of Electronic Materials, 33, p. 283, 2004.
34. Yoshiharu Kariya, Takuya Hosoi, Shinichi Terashima, Masamoto Tanaka, and Masahisa Otsuka, “Effect of silver content of shear fatigue properties of Sn-Ag-Cu flip-chip interconnects;” Journal of Electronic Materials, 33, p. 321, 2004.
35. Zhigang, Chen, Yaowu Shi, and Zhidong Xia, “Constitutive relations creep on SnAgCuRE lead-free solder joints,” Journal of Electronic Materials, 33, p. 964, 2004.
36. Paul T. Vianco, Jerome A. Rejent, and Paul F. Hlava, “Solid state intermetallic compound layer growth between copper and 95.5Sn-3.9Ag-0.6Cu solder,” Journal of Electronic Materials, 33, p. 991, 2004.
37. S. W. Chen, and C. A. Chang, “Phase equilibria of the Sn-Ag-Cu-Ni quaternary System at the Sn-rich corner,” Journal of Electronic Materials, 33, p. 1071, 2004.
38. G. Ghosh, “Interfacial reactions between multicomponent of lead-free solders and Ag, Cu, Ni, and Pd substrates,” Journal of Electronic Materials, 33, p. 1080, 2004.
39. G. Y. Jang, J. Y. Lee, and J. G. Duh, “The nanoindentation characteristics of Cu6Sn5, Cu3Sn and Ni3Sn4 intermetallic compounds in the solder bump,” Journal of Electronic Materials, 33, p. 1103, 2004.
40. S. W. Kim, J. W. Yoon, and S. B. Jung, “Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization,” Journal of Electronic Materials, 33, p. 1182, 2004.
41. Snugovsky, C. Cermignani, D. D. Perovic, and J. W. Rutter, “Solid solubility of Ag and Cu in the Sn phase of eutectic and near-eutectic Sn-Ag-Cu solder alloys,” Journal of Electronic Materials, 33, p. 1313, 2004.
42. Qian Zhang, Abhijit Dasgupta, and Peter Haswell, “Partitioned viscoplastic-constitutive of Pb-free Sn3.9Ag0.6Cu solder,” Journal of Electronic Materials, 33, p. 1338, 2004.
43. Paul T. Vianco, Jerome A. Rejent, and Alice. C. Kilgo, “Creep behavior of ternary 95.5Sn-3.9Ag-0.6Cu-part I: As-cast condition,” Journal of Electronic Materials, 33, p. 1389, 2004.
44. S. T. Kao, J. G Duh, “Effects of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying,” Journal of Electronic Materials, 33, p. 1445, 2004.
45. Ahmed Sharif, and Y. C. Chan, “Comparative study of interfacial reactions of Sn-Ag-Cu and Sn-Ag solders on Cu pads during reflow soldering,” Journal of Electronic Materials, 34, p. 46, 2005.
46. Q. L. Zeng, Z. G. Wang, A. P. Xian, and J. K. Shang, “Cyclic softening of the Sn-3.8Ag-0.7Cu lead-free solder alloy with equiaxed grain structure,” Journal of Electronic Materials, 34, p. 62, 2005.
47. Y. D. Jeon, K. W. Paik, Adreas Ostmann, and Herbert Reichi, “Effects of Cu contents in Pb-free solder alloys on interfacial reactions and bump reliability of Pb-free solder bumps on electroless Ni-P under-bump metallurgy,” Journal of Electronic Materials, 34, p. 80, 2005.
48. G. Y. Jang, J. G. Duh, “The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu under bump metallization,” Journal of Electronic Materials, 34, p. 68, 2005.
49. J. Y. Lee, J. H. Kim, and C. D. Yoo, “Thermosonic bonding of lead-free solder with metal bump for flip-chip bonding,” Journal of Electronic Materials, 34, p. 96, 2005.
50. Andreas R. Fix, Gabriel A. Lopez, Ingo Brauer, Wolfgang Nuchter, and eric Mittemeijer, “Microstructural development of Sn-Ag-Cu solder joint,” Journal of Electronic Materials, 34, p. 137, 2005.
51. M. N. Islam, Ahmed Sharif, and Y. C. Chan, “Effect of volume in interfacial reaction between eutectic Sn-3.5% Ag-0.5% Cu solder and Cu metallization in microelectronic packaging,” Journal of Electronic Materials, 34, p. 143, 2005.
52. S. W. Shin, Jin. Yu, “Creep deformation of Sn-3.5Ag-xCu and Sn-3.5Ag-xBi solder joints,” Journal of Electronic Materials, 34, p. 188, 2005.
53. Q. Xiao, and William D. Armstrong, “Tensile creep and microstructural characterization of Bulk Sn3.9Ag0.6Cu lead-free solder,” Journal of Electronic Materials, 34, p. 196, 2005.
54. Edwin P. Lopez, Paul T. Vianco, and Jerome A. Rejent, “Solderability testing of Sn-Ag-XCu Pb-free solders on copper and Au-Ni-plated kovar substrates,” Journal of Electronic Materials, 34, p. 299, 2005.
55. T. Ogawa, R. Kaga, and T. Ohsawa, “Microstructure and mechanical properties predicted by indentation testing of lead-free solders,” Journal of Electronic Materials, 34, p. 311, 2005.
56. Q. Xiao, N. Y. Luu, and William D. Armstrong, “The anomalous microstructural, tensile, and aging response of thin-cast Sn3.9Ag0.6Cu lead-free solder,” Journal of Electronic Materials, 34, p. 617, 2005.
57. M. N. Islam, and Y. C. Chan, “Interfacial reactions of Cu-containing lead-free solders with Au/NiP metallization,” Journal of Electronic Materials, 34, p. 662, 2005.
58. Q. Xiao, N. Y. Luu, and William D. Armstrong, “Anomalously high tensile creep rates from thin cast Sn3.9Ag0.6Cu lead-free solder ” Journal of Electronic Materials, 34, p. 1065, 2005.
59. S. T. Kao, and J. G. Duh, “Interfacial reactions and compound formation of Sn-Ag-Cu solders by mechanical alloying on electroless Ni-P/Cu under bump metallization,” Journal of Electronic Materials, 34, p. 1129, 2005.
60. D. Q. Yu, C. M. Wu, D. P. He, N. Zhao, L. Wang, and J. K. Lai, “Effect of Cu content in Sn-Cu solder on the composition and morphology of intermetallic compounds at a solder/Ni interface,” Journal of Materials Research, 20, p. 2205, 2005.
61. T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials,” Materials Science and Engineering Review, 49, p. 1, 2005
62. C. H. Lin, S. W. Chen, and C. H. W, “Phase equilibria and solidification properties of Sn-Cu-Ni alloys,” Journal of Materials Research, 31, p. 907, 2002.
63. K. Zeng, and K. N. Tu, “Siz cases of reliability study of Pb-free solder joints in electronic packaging technology,” Materials Science and Engineering Review, 38, p. 55, 2005.
64. T. T. Mattila, V. Vuorinrn, and J. K. Kivilahti, “Impact of printed wiring board coatings on the reliability of lead-free chip-scale package interconnections,” Journal of Materials Research, 19, p. 3214, 2004.
65. P. C. Shih, and K. L. Lin, “Interfacial bonding behavior with introduction of Sn–Zn–Bi paste to Sn–Ag–Cu ball grid array package during multiple reflows,” Journal of Materials Research, 20, p. 219, 2005.
66. C. P. Hung, C. Chen, C. Y. Liu, S. S. Lin, and K. H. Chen, “Metallurgical reactions of Sn-3.5Ag solder with various thicknesses of electroplated Ni/Cu under bump metallization,” Journal of Materials Research, 20, p. 2272, 2005.
67. P. C. Shih, and K. L. Lin, “Effect of microstructural evolution on electrical property of the Sn–Ag–Cu solder balls joined with Sn–Zn–Bi paste,” Journal of Materials Research, 20, p. 2854, 2005.
68. K. N. Tu, G. M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders,” Journal of Applied Physics, 93, p. 1335, 2003.
69. C. E. Ho, Y. W. Lin, S. C. Yang and C. R. Kao, “Effects of limited Cu supply on soldering reactions between SnAgCu and Ni,” Journal of Electronic Materials, 35, p. 1017, 2006.
70. S. W. Chen, and C. H. Wang, “Interfacial reactions of Sn-Cu/Ni couples at 250°C,” Journal of Materials Research, 21, p. 2270, 2006.
指導教授 高振宏、劉正毓
(C.R.Kao、C.Y.Liu)
審核日期 2006-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明