博碩士論文 90344006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.117.196.184
姓名 詹佳樺(Chia-Hua Chan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶膠-凝膠法製備奈米複合材料暨光子晶體之研究
(Via Sol-Gel Porcess to Synthesize Nano-Composite Materials and Photonic Crystal)
相關論文
★ 薄膜氣體吸收系統的解析解與實驗之研究★ 多孔質熱源於封閉區間兩側散熱之自然對流
★ 封閉區間內柱狀多孔質熱源之自然對流系統★ 多孔質中水平絕熱板結合線熱源熱傳與等質通量壁質傳之混合對流
★ 噴流或吸流對共軛熱傳的影響★ 多孔質中結合熱傳與質傳之非達西混合對流
★ 傾斜板在多孔質中結合熱傳與質傳之自然對流★ 多孔質中結合線熱源熱傳與等質通量質傳之非達西混合對流
★ 封閉區間內多孔熱源陣列之數值模擬★ 偶氮系光敏感化合物合成及甲基丙烯酸酯系感光性高分子正、負型光阻製備與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文是利用溶膠-凝膠法製備奈米複合材料以及光子晶體的研究。
在論文的第二章中,以甲基丙烯酸甲酯與甲基丙烯酸-2-羥基乙酯兩種單體與四乙氧基矽烷同時進行高分子聚合以及溶膠-凝膠反應。反應系統藉由適量的起始劑、乙醇、水以及酸觸媒的添加,可以成功的製備出有機-無機奈米複合材料。同時藉由GPC, ASAP, SEM以及TGA等儀器分析得知PMMA/SiO2與PHEMA/SiO2奈米複合材料的熱性質獲得改善。
在論文的第三章中,利用矽以及鋯的氧化物作為殼物質,於其內包覆有機高分子。從研究結果得知如欲獲得氧化矽或是氧化鋯包覆之材質,反應的進行適合在鹼性環境之下操作;當有機高分子表面包覆無機氧化物時,其粒徑約介於0.2~3微米之間,且包覆材料的熱裂解溫度可大幅提昇100℃左右。
在論文的第四章中藉由氣-液界面成功的製造出三維光子晶體以及轉錄型光子晶體結構,從研究結果得知利用氣-液界面不但可以快速的合成光子晶體結構,且由於其具有特定光能隙帶的性質,因此該製程對於光子晶體在未來可作為白光LED與光催化方面的應用。
摘要(英) This study was written to serve as a novel technique to fabricate nano-composite materials and photonic crystals via sol-gel process.
In Chapter 2, the organic-inorganic nano-composite materials have been prepared by using methyl methacrylate (MMA), 2-Hydroxyethyl methacrylate (HEMA) and tetraethoxysilane (TEOS) via the sol-gel process. Under the acid condition, 2,2’-azobisisobutyronnitrile (AIBN) was used as the initiator for the polymerization of MMA and HEMA monomer and various amounts of water was added for synthesizing the SiO2 network. It was found that transparent nano-composite materials could be prepared when acid catalyst and appropriate ethanol added into the reaction system. The products were characterized by GPC, ASAP, SEM and TGA thermograms. The results of TGA analysis show that the thermal properties of the PMMA-SiO2 and PHEMA-SiO2 nano-composite materials are improved.
In Chapter 3, the organic materials with SiO2 or ZrO2 highly coating microcapsule were successfully prepared in the alkaline condition. The products were characterized by SEM and TGA and DSC thermograms. The heat resistance of the products was improved more than 50℃,and the scale of the products were between 0.2~3 um.
In Chapter 4, I propose a novel technique to fabricate a free-standing three-dimensional photonic crystal by self-assembling the colloidal microspheres with controllable thickness from the air–liquid interface. Highly ordered three-dimensional photonic crystals are formed by polymethylmethacrylate or polystyrene monodisperse microspheres. We also demonstrate the fabrication technique of the free-standing inversed opals by removing the microspheres using calcination. The free-standing photonic crystal structures can be used for nano-photonic circuits, white-light LEDs or as a photocatalyst.
關鍵字(中) ★ 溶膠-凝膠
★ 奈米材料
★ 光子晶體
關鍵字(英) ★ Nano Material
★ Photonic Crystal
★ Sol-Gel
論文目次 目錄
目錄……………………………………………………………………..Ⅰ
表索引…………………………………………………………………Ⅶ
圖索引………………………………………………………………….Ⅸ
第一章 前言……………………………………………………………..1
1-1溶膠-凝膠科學………………………………………………………3
1-1-1導論……………………………………………………………….3
1-1-2 溶膠-凝膠科學主要製程參數…………………………………...9
1-1-2-1 酸鹼值對溶膠-凝膠製程的影響………………………………9
1-1-2-2 水含量的多寡對溶膠-凝膠法的影響……………………….12
1-1-2-3溶劑的比例對溶膠-凝膠法的影響…………………………..13
1-2 研究目的…………………………………………………………..14
1-2-1 親疏水性有機單體與四乙氧基矽烷製備有機-無機奈米複合材料之研究……………………………………………………….14
1-2-2 次微米等級金屬氧化物包覆有機高分子之研究……………..14
1-2-3 光子晶體(photonic crystal)的製備……………………………15
1-3 參考文獻…………………………………………………………..16
第二章 親疏水性有機單體與四乙氧基矽烷製備有機-無機奈米複合材料之研究……………………………………………………18
2-1 前言……………………………………………………………….19
2-2 實驗……………………………………………………………….24
2-2-1實驗藥品………………………………………………………..24
2-2-2實驗儀器………………………………………………………..25
2-3同時聚合法製備聚甲基丙烯酸甲酯/二氧化矽奈米複合材料研究……..…………………………………………………………….26
2-3-1 研究參數探討…………………………………………………28
2-3-1-1 起始劑濃度對有機-無機奈米複合材料的影響…………….28
2-3-1-2 共溶劑用量對有機-無機奈米複合材料的影響…………….30
2-3-1-3 pH值對反應系統的影響…………………………..…….…..32
2-3-1-4 水含量對有機-無機奈米複合材料的影響………………….32
2-3-2 聚甲基丙烯酸甲酯/二氧化矽奈米複合材料儀器分析……….36
2-3-2-1 聚甲基丙烯酸甲酯/二氧化矽奈米複合材料熱重損失分析.37
2-3-2-2 聚甲基丙烯酸甲酯/二氧化矽奈米複合材料之比表面積、孔洞體積及孔徑大小分析……………………………………….39
2-3-2-3聚甲基丙烯酸甲酯/二氧化矽奈米複合材料之表面結構分析………………………………………………………………41
2-4前置物法製備聚甲基丙烯酸甲酯/二氧化矽奈米複合材料研究..43
2-4-1 研究參數探討…………………………………………………..46
2-4-1-1 pH值對反應系統的影響……………………………………..46
2-4-1-2水含量對有機-無機奈米複合材料的影響…………………...46
2-4-2 聚甲基丙烯酸甲酯/二氧化矽奈米複合材料儀器分析……….50
2-4-2-1 聚甲基丙烯酸甲酯/二氧化矽奈米複合材料定性分析…….51
2-4-2-2有機無機奈米複合材料之聚甲基丙烯酸甲酯分子量探討…53
2-4-2-3聚甲基丙烯酸甲酯/二氧化矽奈米複合材料熱性質分析…...56
2-4-2-4 聚甲基丙烯酸甲酯/二氧化矽奈米複合材料表面結構分析.58
2-5同時聚合法製備聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料研究………………………………………………………….60
2-5-1研究參數探討……………………………………………………63
2-5-1-1 共溶劑用量對有機-無機奈米複合材料的影響 …………...63
2-5-1-2 pH值對反應系統的影響…………………………………...63
2-5-1-3水含量對有機-無機奈米複合材料的影響…………………...63
2-5-2 聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料儀器分析…………………………………….…………………………68
2-5-2-1 聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料熱重損失分析……………………………………………………………69
2-5-2-2 聚甲基丙烯酸-2-羥基乙酯/二氧化矽 奈米複合材料比表面積、孔洞體積及孔徑大小分析………………………………69
2-5-2-3聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料表面結構分析…………………………………………………………..73
2-6 前置物法製備聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料研究……………………………………………………………….75
2-6-1研究參數探討…………………………………………………..78
2-6-1-1 pH值對反應系統的影響…………………………………….78
2-6-1-2水含量對有機-無機奈米複合材料的影響…………………...78
2-6-2 聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料儀器分析………………………………………………………………...82
2-6-2-1 聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料熱重損失以及玻璃轉移溫度分析………………………………………83
2-6-2-2聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料表面結構分析……………………………………………………………83
2-7 結論………………………………………………………………..87
2-8 參考文獻 ………………………………………………………….89
第三章 次微米等級金屬氧化物包覆有機高分子之研究……………92
3-1前言………………………………………………………………...93
3-1-1包覆技術演進……………………………………………………93
3-1-2膠體顆粒的包覆…………………………………………………94
3-1-3纖維表面的包覆…………………………………………………96
3-1-4 有機薄膜與有機凝膠的包覆…………………………………..98
3-1-5 相轉移素材的包覆……………………………………………..98
3-2 實驗………………………………………………………………101
3-2-1實驗藥品……………………………………………………….101
3-2-2實驗儀器……………………………………………………….102
3-3二氧化矽包覆石蠟微膠囊製備………………………………….103
3-3-1前置物法……………………………………………………….103
3-3-1-1 S-C 法 ( Shell added into Core )…………………………103
3-3-1-2 C-S 法 ( Core added into Shell )…………………………107
3-3-2同時聚合法……………………………………………………..112
3-3-2-1 產物的熱重損失TGA分析…………………………………112
3-3-2-2 產物的DSC與SEM分析…………………………………...116
3-4氧化鋯包覆香精微膠囊製備……………………………………119
3-4-1酸鹼環境對氧化鋯包覆香精物質的影響 …………………..121
3-4-2 不同氫氧化鋯添加量對氧化鋯包覆香精物質的影響………121
3-4-3 反應時間對氧化鋯包覆香精物質的影響……………………124
3-4-4 添加界面活性劑對氧化鋯包覆香精物質的影響……………124
3-5 結論………………………………………………………………128
3-5-1 二氧化矽包覆石蠟微膠囊系統………………………………128
3-5-2 氧化鋯包覆香精微膠囊系統…………………………………128
3-6 參考文獻…………………………………………………………129
第四章 光子晶體的製備…………………………………………….133
4-1 前言………………………………………………………………134
4-1-1傳統光纖製造光子晶體纖維………………………………….135
4-1-2 光蝕刻技術製造二維及三維光子晶體………………………135
4-1-3 自組裝(Self-Assembly) 製造三維光子晶體………………..136
4-2 實驗………………………………………………………………138
4-2-1實驗藥品……………………………………………………….138
4-2-2實驗儀器……………………………………………………….139
4-3 均一粒徑奈米粒子的製備………………………………………140
4-3-1 聚苯乙烯與聚甲基丙烯酸甲酯均一粒徑粒子製備…………140
4-3-2 二氧化矽均一粒徑粒子製備…………………………………140
4-3-3 二氧化矽包覆奈米磁性鐵均一粒徑粒子製備………………143
4-3-4 均一粒徑奈米顆粒物性分析…………………………………143
4-4 三維光子晶體的製備……………………………………………149
4-4-1 抽濾法製備三維光子晶體……………………………………149
4-4-2 離心法製備三維光子晶體……………………………………149
4-4-3 自然乾燥法製備三維光子晶體………………………………151
4-4-4 氣-液界面法製備三維光子晶體……………………………..154
4-4-4-1 氣-液界面生成光子晶體理論推斷………………………...156
4-4-4-2 氣-液界面é由上而下û生成光子晶體理論實驗……………156
4-4-5 揮發性溶劑的添加對光子晶體結構的影響…………………162
4-5 轉錄型光子晶體的製備…………………………………………164
4-5-1 過量金屬氧化物添加量對轉錄型光子晶體的影響…………164
4-5-2 萃取方式移除奈米球對轉錄型光子晶體的影響……………166
4-5-3 鍛燒方式移除奈米球對轉錄型光子晶體的影響……………168
4-6 結論………………………………………………………………174
4-6-1三維光子晶體的製備………………………………………….174
4-6-2 轉錄型光子晶體的製備………………………………………174
4-7 參考文獻…………………………………………………………175
第五章 總結………………………………………...………………..176
5-1親疏水性有機單體與四乙氧基矽烷製備有機-無機奈米複合材料之研究總結……………………………………………………….177
5-1-1 同時聚合法製備聚甲基丙烯酸甲酯/二氧化矽奈米複合材料……………………………………………………………...177
5-1-2 前置物法製備聚甲基丙烯酸甲酯/二氧化矽奈米複合材料...178
5-1-3同時聚合法製備聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料………………………………………………...…………..178
5-1-4 前置物法製備聚甲基丙烯酸-2-羥基乙酯/二氧化矽奈米複合材料……………………………………………………………….179
5-2次微米等級金屬氧化物包覆有機高分子之研究……………….180
5-2-1 二氧化矽包覆石蠟微膠囊系統………………………………180
5-2-2 氧化鋯包覆香精微膠囊系統…………………………………181
5-3光子晶體的製備………………………………………………….182
5-3-1 三維光子晶體的製備…………………………………………182
5-3-2 轉錄型光子晶體的製備………………………………………182
表索引
Table 2-1 The appearance of PMMA by adding various amounts of AIBN………………………………………………………..29
Table 2-2 The appearance and preparation conditions of PMMA/SiO2 nano-composite materials by adding various amounts of EtOH …………………………………………31
Table 2-3 The appearance and preparation conditions a)of PMMA/SiO2 nano-composite materials in different pHb) system……………………………………………………...33
Table 2-4. The appearance and preparation conditions a) of PMMA/SiO2 nano-composite materials by adding various amounts of H2O and MMA…………………..…………...34
Table 2-5 The appearance of PMMA/SiO2 nano-composite materials a)b) by adding various amounts of AIBN ……..44
Table 2-6 The appearance and gel-time of PMMA/SiO2 nano-composite materials a) in different pH system……47
Table 2-7 The appearance of PMMA/SiO2 nano-composite materials a) by adding various amounts of H2O in different pH system …………………………………………………48
Table 2-8 The molecular weight and characteristics of PMMA/SiO2 nano-composite materials………………………………..54
Table 2-9 The appearance of PHEMA by adding various amounts of AIBN………………………………………………………..61
Table 2-10 The appearance and preparation conditions a) of PHEMA/SiO2 nano-composite materials by adding various amounts of EtOH……………………………….64
Table 2-11 The appearance and preparation conditions a)of PHEMA/SiO2 nano-composite materials in different pHb) system…………………………………………………….65
Table 2-12. The appearance and preparation conditions a) of PHEMA/SiO2 nano-composite materials by adding various amounts of H2O and HEMA……………………67
Table 2-13 The results of ASAP analysis for PHEMA/SiO2 nano-composite materials………………………………72
Table 2-14 The appearance of PHEMA/SiO2 nano-composite materials a)b) by adding various amounts of AIBN….....76
Table 2-15 The appearance and gel-time of PHEMA/SiO2 nano-composite materials a) in different pH system..…79
Table 3-1 The preparation condition and TGA measured results of SiO2@ paraffin microcapsule materials by S-C process. ………………………………………………….106
Table 3-2 The preparation condition and TGA measured results of SiO2@ paraffin microcapsule materials by C-S process. ………………………………………………….110
Table 3-3 The preparation condition and TGA measured results of SiO2@ paraffin microcapsule materials by in-situ process. ………………………………………………….114
Table 3-4 The preparation condition and TGA measured results of ZrO2@ essence microcapsule materials……………...122
Table 3-5 The preparation conditiona) and TGA measured results of ZrO2@ essence microcapsule materials by different reaction time……………………………………………..125
Table 3-5 The preparation conditiona) and TGA measured results of ZrO2@ essence microcapsule materials in different reaction time by adding surfactant TAC……………….126
圖索引
Fig.1-1 The sol-gel process…………………………………………4
Fig.1-2 Hydrolysis and condensation process……………….……6
Fig.1-3 Scheme of relative reaction kinetics of alkoxysilanes versus pH……….…………………………………………...10
Fig.2-1 The sol-gel process to synthesis of PMMA/SiO2 nano-composite materials via in-situ polymerization…....27
Fig.2-2 TGA curves of (a) PMMA (b) IOP2H8M2 (c) IOP2H4M2 (d) IOP2H4M1 (e) SiO2 gel ……………..………..……………..38
Fig.2-3 Pore diameter distribution and N2 adsorption and desorption curves of (a) IOP2H8M1 (b) IOP2H8M0.5 (c) ITP2H1M1……………………………………...…………40
Fig.2-4 SEM of (A)IOP2H8M1 (B) ITP2H0.1M1 (C) ITP2H0.1M1 (D) ITP2H0.1M2 (E) ITP2H1M1 …………..………………..42
Fig.2-5 The sol-gel process to synthesis of PMMA/SiO2 nano- composite materials by precursor method……….………45
Fig.2-6 IR spectra of (A) pure PMMA (B) PTP2H2M98 (C) PTP2H2M80 (D) PTP2H2M70…... …………..……………….52
Fig.2-7 GPC profiles of PMMA/SiO2 nano-composite materials..55
Fig.2-8 DSC curves of PMMA/SiO2 nano-composite materials....57
Fig.2-9 SEM of A) Opaque products --- POP2H8M70 B) Semi translucent products --- B1)PSP1H4M80 B2)PSP2H8M80 C) Transparent products --- C1)PTP1H2M80 C2) PTP2H2M80 ………………………………………………….59
Fig.2-10 The sol-gel process to synthesis of PHEMA/SiO2 nano-composite materials via in-situ polymerization…....62
Fig.2-11 TGA curves of (a) SiO2 gel (b) PHEMA (c) IOP2H2E2 (d) IOP2H2E4 (e) IOP2H0.1E4……….....………………….70
Fig.2-12 TGA curves of (a) SiO2 gel (b) ITP2H8E0.05 (c) ITP2H8E0.5 (d) ITP2H8E4 (e)PHEMA ….............................…………71
Fig.2-13 SEM of Opaque products --- (a) IOP2H0.1E1 (b) IOP2H0.1E4
Transparent products --- (c) ITP2H8E4 (d) ITP2H8E8……..74
Fig.2-14 The sol-gel process to synthesis of PHEMA/SiO2 nano-composite materials by pr
ecursor method……….. 77
Fig.2-15 The gel time of PHEMA/SiO2 nano-composite materials by adding various amounts of H2O( pH=1) …………….……80
Fig.2-16 TGA curves of PHEMA/SiO2 nano-composite materials by adding various amounts of H2O in different pH system (a) pH=1 (b)pH=2 (c) pH=5 ……………….…………84
Fig.2-17 DSC curves of PHEMA/SiO2 nano-composite materials.85
Fig.2-18 SEM of a) PHEMA b) PTP1H4E80 c)PTP1H4E80 d)POP5H8E80 …………………….………………………….86
Fig.3-1 The preparation of microcapsule materials in S-C process. …………………………………………………...104
Fig.3-2 The preparation of microcapsule materials in C-S process. …………………………………………………...108
Fig.3-3 TGA curves of (a) pure paraffin (b) CSP15S5 (c) CSP15S0.5 ………………………….…………………….111
Fig.3-4 The preparation of microcapsule materials by in-situ process. …...……………………………………………….113
Fig.3-5 TGA curves of (a) pure paraffin (b) microcapsule material C5 ……...………………………………………………….. 115
Fig.3-6 SEM of microcapsule material C5 ………………………117
Fig.3-7 DSC curves of (a) pure paraffin (b) microcapsule material C5 after 280℃ 3min (c) microcapsule material C5.....…118
Fig.3-8 The preparation of ZrO2 coating microcapsule materials………………………………………………… ..120
Fig.3-9 The TGA curves and SEM of ZrO2@ essence microcapsule materials…………………..……………….123
Fig.3-10 The TGA curves(a) and SEM(b) of ZrO2@ essence microcapsule materials (Table 3-5 --- A2) …...………... 127
Fig.4-1 The preparation of PS and PMMA monodisperse nanopheres…………………..…………………………... 141
Fig.4-2 The preparation of SiO2 monodisperse nanopheres…..142
Fig.4-3 The preparation of SiO2 @ Fe3O4 monodisperse………144
Fig.4-4 SEM and PSA analysis of 300nm PS sphere…………..145
Fig.4-5 SEM and PSA analysis of 200nm PMMA sphere………146
Fig.4-6 SEM and PSA analysis of 500nm SiO2 sphere…………147
Fig.4-7 SEM and PSA analysis of 400nm SiO2 @ Fe3O4 sphere. …………………………………………………….148
Fig.4-8 The SEM of 3D structure of 300nm PS sphere by vacuum-filtration method…………………………………150
Fig.4-9 3D structure of 300nm PS sphere by centrifugal method……………………………………………………..152
Fig.4-10 The SEM of 3D structure of 300nm PS sphere by nature-drying method…………………………………….153
Fig.4-11 The appearance of the air-liquid interface of PMMA microspheres latex………………………………………..155
Fig.4-12 The schematic growth process of photonic crystals assembled on the air-liquid interface……………………157
Fig.4-13 The SEM images of the photonic crystals after different heating durations……….…………………………………158
Fig.4-14 The SEM images of the photonic crystals……………...160
Fig.4-15 The SEM image and reflection spectrum of microspheres with the diameter of 720nm. ………………….………….161
Fig.4-16 The SEM image of photonic crystals…………………...163
Fig.4-17 The preparation of inversed opal like photonic crystals. …………………………………...……………….165
Fig.4-18 The SEM image of an excess of metal oxides added into the photonic crystals structure…………………..……….167
Fig.4-19 The SEM image of inversed SiO2 structure gets by extraction method………………………………..………. 169
Fig.4-20 The SEM images of SiO2 filled with 720nm PS sphere photonic crystals…….…………………………...………..170
Fig.4-21 The SEM images of SiO2 inversed photonic crystals….171
Fig.4-22 The reflection spectrum of the SiO2 inversed photonic crystals with the period of 220 nm……………………….173
參考文獻 第一章
1. Ebelmen, J. J. Ann., 57,331(1846)
2. Geffcken, W. and Berger, E. German Patent 736 411 (1939)
3. Schroeder, H. Phys. Thin Film, 5, 87(1969)
4. Woodhead, J. L. Silicate Ind., 37, 191 (1972)
5. Levene, L. and Thomas, I. M. U.S. Patent 3,640,093(1972)
6. Dislich, H. Angewandt Chemie, 10, 363(1971)
7. Iler, R. K. The Chemistry of silica (Wiley, New York, 1979).
8. Sur, G. S. and Mark, J. E. Eur Polym. J., 21, 1051 (1985)
9. Mark, J. E. and Sur, G. S. Polym. Bull., 14, 325 (1985)
10. Clarson, S. J. and Mark, J. E. Polym. Commun., 28, 249(1987)
11. Imai, Y. ADVANCES IN POLYMER SCIENCE. 140, 1 (1999)
12. He-JA Samuelson-L Li-L Kumar-J Tripathy. SKADVANCED MATERIALS. 11, 435 (1999)
13. Guglielmi-M Brusatin-G Facchin-G Gleria-M .APPLIED ORGANOMETALLIC CHEMISTRY. 13, 339(1999)
14. Takahashi, Yoshihiro; Maeda, Akinori; Kojima, Kenzo; Uchida, Kenji. J. Luminescence. 87, 767 (2000)
15. Opallo, Marcin; Kukulka, J. Electrochemistry Communications. 2, 394 (2000)
16. Mimura, Shinya; Naito, Hiroyoshi; Kanemitsu, Yoshihiko; Matsukawa, Kimihiro; Inoue, Hiroshi. J. Organometallic Chemistry. 611, 40 (2000)
17. Jang, S.H.; Han, M.G.; Im, S.S. Synthetic Metals. 110,17 (2000)
18. Chang, T.C.; Wang, Y.T.; Hong, Y.S.; Chen, H.B.; Yang, J.C. Polymer Degradation and Stability. 69, 317 (2000)
19. Dallmann, Kai; Buffon, Regina. Catalysis Communications. 1, 9(2000)
20. A.-M. Siouffi. Journal of Chromatography A, 1000, 801 (2003)
21. Yoldas, B. E., J. Mater. Sci., 14, 1843(1979)
22. Nogami, M. and Moriya, Y., J. Non-Cryst. Solids,37,191 (1980)
第二章
1. Tamaki, R., Naka, K., and Chujo, Y., Polymer Bulletin, 39, 303(1997)
2. Tamaki, R.; Horiguchi, T. and Chujo, Y. Chem. Soc. Jpn., 71 2749(1998)
3. Tamaki, R. and Chujo, Y. J. Mater. Chem., 8, 1113(1998)
4. Tamaki, R. and Chujo, Y. App;. Organometal. Chem., 12, 755(1998)
5. Tamaki, R., Naka, K., and Chujo, Y., Polymer Journal, 30, 60(1998)
6. Nell, J. L. W., Wilkes, G. L., and Mohanty, D. K., J. Appl. Polym. Sci., 40, 1177 (1990)
7. Cicillini, S. A., Calefi, P. S., Neri, C. R., Nassar, E. J., and Serra, O. A., J. Non-Crystalline Solids, 247, 114(1999)
8. Chujo, Y. et al., Makromol. Chem., 42, 303(1991)
9. Chujo, Y., Ihara, E., Kure, S. and Saegusa, T., Macromolecules, 26, 5681(1993)
10. Landry, C. J. T., Coltrain, B. K. and Brady, B. K., Polymer, 33, 1486(1992)
11. Tamaki, R., Naka, K., and Chujo, Y., Polymer Journal, 30, 60(1998)
12. Sakurai, K., Douglas, E., and MacKnight, W. J., Macromolecules, 25, 4506(1992)
13. Sakurai, K., Douglas, E., and MacKnight, W. J., Macromolecules, 26, 208 (1993)
14. Bakeev, K. N., Chugunov, S. A., Teraoka, I., MacKnight W. J., Zezin, A. B., and Kabanov, V. A., Macromolecules, 27, 3926(1994)
15. Bakeev, K. N., Shu, Y. M., MacKnight, W. J., Zezin, A. B., and Kabanov, V. A., Macromolecules, 27, 300(1994)
16. Ng, C.-W. A., Lindway, M. J., and MacKnight, W. J., Macromolecules, 27, 3027(1994)
17. Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 27, 3033(1994)
18. Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 29, 2421(1996)
19. Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 29, 2412 (1996)
20. Backov, R., Bonnet, B., Jones, D. J., and Rozie're, J., Mater. Chem., 9, 1812(1997)
21. Chaneac, C., Tronc, E., and Jolivet, J. P., J. Mater. Chem., 6, 1905(1996)
22. Clevenger, M. B., Zhao J., and McDevitt J. T., Chem. Mater., 8 2693(1996)
23. Fikushima, Y., and Tani M., J. Chem. Soc., Chem. Commun., 241(1995)
24. Kotov, N. A., Magnov, S., and Tropsha, E., Chem. Mater., 10, 886(1998)
25. Wang, Z., Lan, T., and Pinnavaia, T. J., Chem. Mater., 8 2200(1996)
26. Krishnamoorti, R., Vaia, R. A., and Giannelis, E. P., Chem. Mater., 8 1728(1996)
27. Harmer, M. A., Farneth, W. E., Sun, Q., J. Am. Chem. Soc., 118, 7708(1996)
28. Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., and Mauritz, K. A., Chem. Mater., 9, 36(1997)
29. Shi, Y., and Seliskar, C. J., Chem. Mater., 9, 821 (1997)
30. Sun, Q., Harmer, M. A., and Farneth, W. E., Chem. Commun., 1201(1996)
31. Tamaki, R. and Chujo, Y. Chem. Mater., 11, 1719(1999)
32. Tamaki, R., Chujo, Y., Polym. Prepr. Jpn., 47, 4227(1998)
33. Mark, J. E. and Sun, C. C., Polym. Bull., 18, 259(1987)
34. Huang, H. H. and Wilkes, G. L., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem), 28, 244(1987)
35. Novak, B. M., Ellsworth, M., and Davis, C., Extended Abstracts, Tapan-U.S. Joint Seminar on Inorganic and Organometallic Polymers, (1991) 160
36. Mascia, L. and Kioul, A., Polymer, 36, 3649(1995)
37. Huang, Z. H., Qiu, K. Y., Dong, J. H., and Wei, Y., J. Appl. Polym. Sci., 66, 853(1997)
38. Huang, Z. H., Qiu, K. Y., and Wei, Y., J. Polym. Sci., Part A: Polym. Chem., 35 2403(1997)
39. Wei, Y.; Yang, D.; Tang, L. and Hutchins, M. K., J. Mater. Res., 8, 1143(1993)
40. 詹佳樺, 魏宏森, 陳暉, “同時聚合法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”, 第二十五屆高分子研討會, pp.159. (2002)
41. 詹佳樺, 翁維祥, 蔡松伯, 陳暉, “前置物法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”, 第二十五屆高分子研討會, pp.162. (2002)
42. 詹佳樺、林京亮、魏宏森、陳暉, “同時聚合下製備有機/無機高分子混成體“, 第二十六屆高分子研討會(2003)
第三章
1. Kydonieus,A.F.(ed.),ControlledReleas,Technologies:Methods,Theory and Application,Vol.I.CRCPress,Florida,(1980)
2. Vandegaer,J.E.(ed.),Microencapsulation Processes and Applications,Phenum Press,New York,(1974)
3. Spark,R.E.,Microencapsulation in Encyclopedia of Chemical technology,3rd Edition,Vol.15,John Wiley&Sons,New York,(1981)
4. 沈宗禮,制放技術與微粒包覆,高立圖書有限公司(1980)
5. A. P. Philipse and van Bruggen, Pathmamanoharan C. Langmuir, 10, 92-99. (1994)
6. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir, 12, 4329-4335. (1996)
7. Correa-Duarte, M. A.; Giersig, M.; Liz-Marzan, L. M. Chem. Phys. Lett., 286, 497-501. (1998)
8. Wang, G.; Harrision, A. J. Colloid Interface Sci. 217, 203-207. (1999)
9. Mulvaney, P.; Liz-Marzan, L. M.; Giersig, M.; Ung, T. J. Mater. Chem. 10, 1259-1270. (2000)
10. Alejandro-Arellano, M.; Ung, T.; Blanco, A.; Mulvaney, P.; Liz-Marzan, L. M, Pure Appl. Chem. 72, 257-267. (2000)
11. Aliev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Liz-Marzan, L. M.; Kotov, N.A. Adv. Mater.
11, 1006-1010. (1999)
12. Stober, W.; Fink, A.;Bohn, E. J. Colloid Interface Sci. 26, 62-69. (1968)
13. Li, T.; Moon, J.;Morrone, A. A.; Mecholsky, J. J.; Talham, D. R.; Adair, J. H. Langmuir 15, 4328-4334. (1999)
14. Ryan, J. N.; Elimelech, M.; Baeseman, J. L.; Magelky, R. D. Environ. Sci. Technol. 34, 2000-2005. (2000)
15. Oldfield, G.; Ung, T.; Mulvaney, P. Adv. Mater. 12, 1519-1522. (2000)
16. Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. Langmuir 16, 2731-2735. (2000)
17. Hsu, W. P.; Yu, R.; Matijevic, E. J. Colloid Interface Sci. 156, 56-65. (1993)
18. Aiken, B.; Matijevic, E. J. Colloid Interface Sci. 126, 645-649. (1988)
19. Aiken, B.; Hsu, W. P.; Matijevic, E. J. Mater Sci.25,1886-1894. (1990)
20. Giesche, H.; Matijevic, E. J. Mater. Res. 9, 436-450. (1994)
21. Garg, A.; Matijevic, E. Langmuir, 4, 38-44(1988)
22. Garg, A.; Matijevic, E. J. Colloid Interface Sci. 126, 243-250. (1988)
23. Kawahashi, N.; Matijevic, E. J. Colloid Interface Sci. 138, 534-542. (1990)
24. Kawahashi, N.; Persson C.; Matijevic, E. J. Mater. Chem. 1, 577-582. (1991)
25. Bamnolker, H.; Nitzan, B.; Gura, S.; Margel, S. J. Mater. Sci. Lett. 16, 1412-1415. (1997)
26. Holland, B. T.; Blanford, C. F.; Stein, A. Science 281, 538-540. (1998)
27. Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A. Chem. Mater. 11, 795-805. (1999)
28. Park, S. H.; Xia, Y. Adv. Mater. 10, 1045-1048. (1998)
29. Gates, B.; Yin, Y.; Xia, Y. Chem. Mater. 11, 2827-2836.(1999)
30. Tamon, H.; Sone, T.; Mikami, M.; Okazaki, M. J. Colloid Interface Sci. 188, 493-500. (1997)
31. Wijnhoven, J. E. G. J.; Vos, W. L. Science, 281, 802-804.(1998)
32. Yan, H.; Holland, B. T.; Blanford, C. F.; Parent, M.; Smyrl, W. H.; Stein, A. Adv. Mater. 11, 1003-1006. (1999)
33. Vlasov, Y. A.; Yao, N.; Norris, D. J. Adv. Mater. 11, 165-169. (1999)
34. Shiho, H.; Kawahashi, N. Colloid Polym. Sci. 278, 270-274. (2000)
35. Valtchev, V.; Mintova, S.; Vulchev, I.; Lazarova, V. J. Chem. Soc., Chem. Commun. 2087-2088. (1994)
36. Terech, P.; Weiss, R. G. Chem. Rev. 97, 3133-3159. (1997)
37. Ono, Y.; Nakashima, K.; Sano, M.;Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S. Chem. Commun. 1477-1478. (1998)
38. Ono, Y.; Kanekjyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S. Chem. Lett. 23-24. (1999)
39. Jung, J. H.; Ono, Y.; Shinkai, S. J. Chem. Soc., Perkin Trans. 2 1289-1291. (1999)
40. Jung, J. H.; Ono, Y.; Shinkai, S. Langmuir 16,1643-1649.(2000)
41. Jung, J. H.; Ono, Y.; Shinkai, S. Angew. Chem., Int. Ed. 39, 1862. (2000)
42. Jung, J. H.; Ono, Y.; Hanabusa, K.; Shinkai, S. J. Am. Chem. Soc. 122, 5008-5009. (2000)
43. Dong, R.; Hirata, Y. J. Ceram. Soc. Jpn. 108, 823-829. (2000)
44. Caruso, R. A.; Schattka, J. H. Adv. Mater.12, 1921-1923.(2000)
45. Caruso, R. A.; Giersig, M.; Willig, F.; Antonietti, M. Langmuir 14, 6333-6336. (1998)
46. Antonietti, M.; Goltner, C.; Hentze, H.-P. Langmuir 14, 2670-2676. (1998)
47. Antonietti, M.; Caruso, R.A.; Goltner, C. G.; Weissenberger, M. C. Macromolecules 32, 1383-1389. (1999)
48. Caruso, R. A.; Antonietti, M.; Giersig, M.; Hentze, H.-P.; Jia, J. Chem. Mater. 13, 1114-1123. (2000)
49. Holman; Mark E.US Patent 6,099,894(2000)
50. Holman; Mark E.US Patent 6,171,647(2001)
51. Holman; Mark E.US Patent 6,197,415(2001)
52. Pause; Barbara US Patent 6,077,597(2000)
53. Bryant; Yvonne G. ; Colvin; David P. US Patent 4,756,958(1987)
54. Colvin; David P.; Bryant; Yvonne G.; Mulligan; James C. US Patent 5,290,904(1991)
55. Bryant; Yvonne G. ; Colvin; David P. US Patent 5,366,801(1992)
56. Bryant; Yvonne G. ; Colvin; David P. US Patent 5,499,460(1994)
57. Colvin; David P.; Bryant; Yvonne G. US Patent 5,637,389(1996)
58. Whitney; Raymond A.; Colvin; Virginia S.; Colvin; David P.; Mulligan; James C. US Patent 5,141,079(1991)
59. McMills; Corey; Mattis; John US Patent 5,435,736(1993)
60. 詹佳樺, 陳暉,奈米粒子之包覆技術, 化工技術,三月號, 120期, pp.204-215(2003)
61. 詹佳樺、黃智楷、蔡燕鈴、陳暉, “行溶膠-凝膠法製備二氧化矽包覆石蠟碳氫化合物之研究”, 第二十六屆高分子研討會(2003)
第四章
1. Yurii A. Vlasov, Nature 414, 289 (2001)
2. Schroden, Mohammed Al-Daous, Christopher F. Blanford, and Andreas Stein, Chem. Mater. 14, 3305 (2002)
3. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002)
4. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)
5. S. John, Phys. Rev. Lett. 58, 2468 (1987)
6. Philip Russell, Science 299, 358 (2003)
7. A.Imhof and D.J. Pine, Nature 389, 30 (1997)
8. J. E. G. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998)
9. Holland, B. T.; Blanford, C. F.; Do, T. and Stein, A., Chem. Mater. 11, 795 (1999)
10. M. Campbell, Nature 404, 53 (2000)
11. A.Blanco et al, Nature 405, 437 (2000)
12. Susumu Noda et al, Science 289,28 (2000)
13. Mohan Srinivasarao, Science 292, 79 (2001)
14. David J. Norris, Nature, 416, 685 (2002)
15. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, Science 284,1819 (1999)
16. J. D. Joannopoulos, Nature, 414, 257(2001)
17. Y. H. Ye et al, Appl. Phys. Lett. 78, 52.(2001)
18. G. Lu et al, Advanced Materials, 14, 1799. (2002)
19. P. V. Braun et al, Nature, 402, 603 (1999)
20. Z. Z. Gu, J. Appl. Phys., 90, 2042 (2001)
21. F. Bresson, C.-C. Chen, G. C. Chi and Y.-W. Chen, Appl. Surf. Sci., 217/1-4, 281(2003)
指導教授 林孝宗(Hsiao-Tsung Lin) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明