博碩士論文 90344012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.12.162.179
姓名 楊憲昌(Hsien-Chang Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 擔載銅觸媒和金觸媒之製備與應用研究
(preparation and application studies of highly active supported copper and gold catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分成擔載銅觸媒和擔載金觸媒兩部份。
擔載銅觸媒部份:
本研究以稻殼為起始原料,經過水洗、酸洗、熱解及碳燒等處理程序,製成稻殼灰分,並以其為擔體,利用離子交換法製備成稻殼灰分擔體銅觸媒(簡稱為Cu/RHA觸媒),也用相同方法製備商用氧化矽膠擔體銅觸媒(簡稱為Cu/SiO2觸媒)。配合物性檢測元素分析儀(EA)、感應耦合電漿原子放射光譜儀(ICP-AES)、氮吸附法、傅利葉轉換紅外線光譜儀(FTIR)、X射線繞射儀(XRD)、微分掃描熱分析儀(DSC)、X-Ray光電子光譜儀(XPS)、程式升溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)及穿透式電子顯微鏡(TEM)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定。然後以乙醇脫氫反應作為觸媒催化活性的測試,藉以評估稻殼灰分做為觸媒擔體的可行性。在稻殼灰分的組成分析方面,從分析結果得知:二氧化矽的純度達99 wt%,其晶態屬於非晶型的二氧化矽,氮吸附分析結果指出其BET比表面積約為153 m2/g,煅燒後的Cu/RHA觸媒,其BET比表面積隨銅金屬載量增加而增加。FTIR的分析結果顯示,利用離子交換法製備Cu/RHA觸媒,在煅燒前為類孔雀石結構。由XPS結果得知,煅燒後Cu/RHA觸媒表面存在氧化銅和Cu2+離子,在523 K下經氫氣還原氧化銅成Cu0或/和Cu+。TEM中看出銅晶粒呈圓形,在RHA表面上有高分散度。從TPR圖譜可看出,Cu/RHA觸媒在不同銅金屬載量下有相同的還原溫度,不同銅載量有相同的擔體效應。從XRD圖譜也可看出,銅粒徑隨著煅燒溫度的增加有增加的趨勢。Cu/RHA觸媒在483~573 K下進行乙醇脫氫反應,結果顯示,不同煅燒溫度對反應性影響不大,但隨銅載量的增加而稍微增加。比較Cu/RHA與Cu/SiO2觸媒的結果,Cu/RHA觸媒比Cu/SiO2觸媒有更高的活性和較低的活性衰退。
擔載金觸媒部份:
本研究利用共沈澱法製備Au/MnOx 和 Au/CuO/ZnO奈米金觸媒。配合物性檢測感應耦合電漿原子放射光譜儀(ICP-AES)、氮吸附法、X射線繞射儀(XRD)、熱重分析儀(TGA)、X-Ray光電子光譜儀(XPS)、穿透式電子顯微鏡(TEM)及掃描式電子顯微鏡(SEM)等各項儀器分析對觸媒進行鑑定。甲醇部份氧化反應作為觸媒催化活性的測試,藉以產製高純度氫氣,並比較Au/CuO/ZnO 觸媒和Au/ZnO、CuO/ZnO觸媒的活性。
在Au/MnOx觸媒方面,XRD和XPS結果顯示,未煅燒觸媒擔體是碳酸錳,金則呈氧化金和金屬態金共存。在573 K下煅燒,碳酸錳分解為Mn2O3,金則由氧化金分解為金屬態金。TEM圖片看出金晶粒呈圓形,增加煅燒溫度至873 K,金粒子從5.2 nm成長至7.5 nm。不同金載量、煅燒溫度和反應溫度會影響反應活性。以氫氣選擇率而言,最適當的金載量為1.9 at.%。未煅燒觸媒具有較高的甲醇轉化率和氫氣選擇率,隨著煅燒溫度增加而下降。未煅燒觸媒活性較高的原因是因為金晶粒較小,氧化金量較多,也存在較多的氫氧基。在反應溫度473~563 K下,甲醇轉化率和氫氣選擇率隨著反應溫度增加而增加,到了523 K 之後就趨於穩定。由不同反應溫度分析,在低溫下反應為甲醇部份氧化,在高溫為甲醇水汽重組反應。
在Au/CuO/ZnO觸媒,由TGA和XRD分析得觸媒主要由hydrozincite (Zn5(CO3)2(OH)6) 組成,次成分為aurichalcite (Zn3Cu2(CO3)2(OH)6)。隨著煅燒溫度提高,這二者分解成CuO和ZnO。
TEM結果得知,隨著煅燒溫度增加至673 K,金晶粒由2.5成長到13 nm。比較Au/CuO/ZnO和CuO/ZnO觸媒的TPR,金成分存在會使氧化銅還原成金屬銅的還原溫度偏向低溫。Au/CuO/ZnO、Au/ZnO和CuO/ZnO觸媒在523 K,進料O2/CH3OH為0.5下,進行甲醇部份氧化反應;Au/CuO/ZnO觸媒有較高的活性和氫氣選擇率,較少的一氧化碳產生,由XRD和TPR分析是由於Au/CuO/ZnO觸媒有氧化態金和還原態的銅存在,因此具有高活性。在不同煅燒溫度下比較,最適當的煅燒溫度為573 K。在不同反應溫度423~548 K下,Au/CuO/ZnO觸媒進行反應。反應溫度達448 K,氧氣轉化率就達100 %;升溫至498 K甲醇轉化率達100 %,一氧化碳的形成則是由甲醇熱分解所產生。與文獻上銅觸媒、鈀觸媒的催化結果做比較,金觸媒不僅催化活性高,產生的CO氣體量少。由此結果可看出奈米金觸媒對於催化甲醇部份氧化反應,能夠選擇性的抑制CO的產生,相信可應用在燃料電池的氫氣源供應上。
摘要(英) This thesis is divided into two parts.
Part Ⅰ:Supported copper catalyst
Samples of copper on rice husk ash (Cu/RHA) have been prepared by the ion exchange method, with various copper loadings and have been calcined at different temperatures. Such samples were tested for dehydrogenation of ethanol to acetaldehyde. The samples were characterized by DSC, XRD, FTIR, TEM, XPS, TPR, BET, and H2-N2O titration techniques. FTIR spectra of dried and calcined samples illustrate the formation of chrysocolla in Cu/RHA. XRD and XPS results of the calcined sample show the presence of two different species of copper, as CuO and as Cu2+ ions. Upon reduction in hydrogen above 523 K, the copper species are partially reduced to Cuo and/or Cu+. TEM images show that copper crystallites are spherical in shape and are evenly distributed. TPR results reveal that various copper loadings in Cu/RHA exhibit similar metal-support interaction (MSI). Ethanol conversion for dehydrogenation of ethanol is found to be independent with calcination temperature and has little effect on Cu loading. Ethanol is selectively converted to acetaldehyde at the reaction temperature of 483~573 K. The Cu/RHA exhibit higher catalytic activity and lower deactivation rate in comparison with Cu/SiO2 catalysts. Catalytic activity of Cu/RHA is found to depend on both Cu surface area and interaction of metal species with the support.
Part Ⅱ:Supported gold catalyst
Hydrogen production by partial oxidation of methanol, using air as oxidant, has been studied over a series of Au/MnOx and Au/CuO/ZnO catalysts, prepared by co-precipitation technique. The activity of Au/CuO/ZnO catalysts has been compared with Au/ZnO and CuO/ZnO catalysts.Catalyst characterization included ICP, TGA, TPR, BET, XRD, TEM and XPS analysis.
In Au/MnOx catalysts, XRD and XPS analyses demonstrate that in uncalcined catalyst the support is present mainly as manganese carbonate and gold as both in metallic and oxidic form. After calcination at 573 K, the carbonate converted to oxides of manganese, mainly as Mn2O3 and oxidized Au phase is reduced to metallic gold. TEM analysis indicates that the manganese support is present as plate-like shape and the gold particles as spherical shape. The size of the gold particles increases from 5.2 nm to 7.5 nm when the calcination temperature increases up to 873 K. Different gold loading, calcination temperature and reaction temperature strongly influence the catalytic activity. The optimum gold content for hydrogen selectivity is 1.9 at.% Au. The uncalcined catalyst shows the highest activity and it decreases with increasing calcination temperature. The higher activity of uncalcined catalyst could be due to the presence of smaller metallic Au crystallites with partially oxidized Au and excess hydroxyl group. It appears plausible to suggest that pore size play a key role in determining the hydrogen selectivity. In the reaction temperature range of 473~563 K, both hydrogen selectivity and methanol conversion increase with increasing the temperature and reach a steady state at 523 K. The overall reaction consists of consecutive partial oxidation of methanol at low temperature and methanol steam reforming at high temperature.
In Au/CuO/ZnO catalysts, TGA and XRD analyses demonstrate that the uncalcined Au/CuO/ZnO catalyst samples contain hydrozincite (Zn5(CO3)2(OH)6) and aurichalcite (Zn3Cu2(CO3)2(OH)6) as major components. They decompose into CuO and ZnO during the calcination procedure. TEM analysis reveals that the size of the gold particles increases from 2.5 to 13 nm with the rise in calcination temperature up to 673 K. TPR studies of the CuO/ZnO and Au/CuO/ZnO samples indicate that a shift to lower temperatures for the reduction of Cu2+ to metallic copper in the gold containing sample. This phenomenon is caused by an interaction between gold, CuO and ZnO. The catalytic activity of Au/CuO/ZnO, Au/ZnO and CuO/ZnO catalysts for the POM reaction was studied at 523 K using O2/CH3OH molar ratio of 0.5. The Au/CuO/ZnO catalysts are highly active for POM reaction to produce hydrogen with lesser amount of CO. The results obtained by XRD and TPR characterization indicate that oxidized gold species and reduced copper species in catalysts are active for high activity. The effect of calcination temperature on Au/CuO/ZnO performance shows that the ideal calcination temperature is 573 K. The effect of reaction temperature on catalytic performance of the Au/CuO/ZnO catalysts was studied in the temperature range of 423~548 K. At 448 K the reaction sets on and complete consumption of O2 is observed. Methanol conversion reaches 100 % at 498 K and hydrogen selectivity reaches 100 % at 523 K. CO formed by methanol decomposition is converted to CO2 leading to very low CO throughout the temperature range studied. Water formed by methanol combustion is consumed by steam reforming reaction at high reaction temperatures, leading to 100 % selectivity towards hydrogen formation.
關鍵字(中) ★ 金觸媒
★ 乙醇脫氫反應
★ 銅觸媒
★ 甲醇部份氧化反應
★ 氫氣
關鍵字(英) ★ ethanol dehydrogenation
★ copper catalysts
★ gold
論文目次 內容 頁數
中文摘要 ------------------------------------------------------------------Ⅰ
英文摘要 --------------------------------------------------------------- ⅠⅤ
圖索引 ------------------------------------------------------------------- ⅩⅤ
表索引 ------------------------------------------------------------------- ⅩⅩⅡ
第一部份:以離子交換法製備稻殼灰分擔體銅觸媒
第一章 緒論----------------------------------------------------------- 1
1.1 前言--------------------------------------------------------- 1
1.2 研究內容與本論文的架構------------------------------ 3
第二章 文獻回顧------------------------------------------------------5
2.1 稻殼的組成與性質---------------------------------------5
2.2 稻殼灰分擔體的製備------------------------------------ 5
2.2-1 稻殼的水洗及酸洗---------------------------------------8
2.2-2 稻殼的熱解------------------------------------------------9
2.3 離子交換法製備擔體銅觸媒---------------------------- 10
2.4 煅燒與還原程序------------------------------------------11
2.4-1 煅燒程序---------------------------------------------------11
2.4-2 還原程序---------------------------------------------------13
2.5 擔體效應---------------------------------------------------14
2.6 銅金屬表面積的測定------------------------------------ 15
2.7 乙醇脫氫反應---------------------------------------------16 第三章 實驗方法與裝置------------------------------------------19
3.1 稻殼灰分擔體的製備------------------------------------ 19
3.1-1 水洗程序--------------------------------------------------- 19
3.1-2 酸洗程序--------------------------------------------------- 19
3.1-3 熱解程序--------------------------------------------------- 20
3.1-4 碳燒程序--------------------------------------------------- 21
3.2 擔體銅觸媒的製備------------------------------------------- 21
3.3 稻殼灰分擔體與擔體銅觸媒的鑑定分析------------- 22
3.3-1 感應耦合電漿質譜儀(ICP-MS)及感應耦合電漿原子放射光譜儀(ICP-AES)分析-------------------------- 23
3.3-2 元素分析(EA)---------------------------------------------24
3.3-3 BET比表面積、孔隙體積及孔徑大小分佈的分析- 24
3.3-4 X-射線繞射分析(XRD)--------------------------------------25
3.3-5 微分掃描熱分析(DSC)-------------------------------------- 27
3.3-6 傅利葉紅外線光譜儀(FTIR)-------------------------------- 27
3.3-7 程式升溫還原(TPR)-------------------------------------- 27
3.3-8 銅金屬表面積的量測------------------------------------- 28
3.3-9 穿透式電子顯微鏡(TEM)------------------------------- 32
3.3-10 X-Ray 光電子光譜儀(XPS)----------------------------- 32
3.4 觸媒的活性測試-乙醇脫氫反應---------------------- 33
3.5 實驗流程與操作變數------------------------------------- 35
3.5-1 稻殼灰分(RHA)的製備---------------------------------- 35
3.5-2 轉化率的定義與計算------------------------------------ 38
3.6 藥品、氣體及儀器設備--------------------------------- 40
3.6-1 藥品--------------------------------------------------------- 40
3.6-2 氣體--------------------------------------------------------- 40
3.6-3 儀器設備--------------------------------------------------- 40
第四章 結果與討論--------------------------------------------------- 43
4.1 稻殼灰分組成的分析---------------------------------------- 43
4.2 Cu/RHA觸媒的特性分析---------------------------------- 43
4.2-1 銅離子濃度對銅金屬載量的影響------------------------- 46
4.2-2 微分掃描熱分析儀(DSC)的分析結果-------------------- 48
4.2-3 觸媒總表面積及銅金屬表面積的測定結果------------- 48
4.2-4 X-射線繞射(XRD)的分析結果---------------------------- 52
4.2-5 傅氏轉換紅外光譜(FTIR)的分析結果------------------- 56
4.2-6 X-Ray光電子光譜儀(XPS)的分析結果------------------ 56
4.2-7 穿透式電子顯微鏡(TEM)的分析結果-------------------- 58
4.2-8 程式升溫還原(TPR)的分析結果--------------------------- 64
4.3 Cu/RHA觸媒的化性分析-----------------------------------66
4.3-1 金屬載量對觸媒活性的影響-------------------------------68
4.3-2 煅燒溫度對觸媒活性的影響-------------------------------70
4.3-3 還原條件對觸媒活性的影響-------------------------------72
4.3-4 反應溫度對觸媒活性的影響-------------------------------74
4.3-5稻殼灰分與商用氧化矽膠擔載銅觸媒的活性結果比較-------------78
第五章 結論---------------------------------------------------83
第二部份:以共沈澱法製備Au/MnOx和Au/CuO/ZnO奈米金觸媒
第六章 緒 論----------------------------------------------------85
6.1 前言---------------------------------------------------------85
6.2 燃料電池原理-------------------------------------------------85
6.3 金觸媒與甲醇製氫反應------------------------------------87
6.4 研究內容與本論文的架構------------------------------ 88
第七章 文獻回顧------------------------------------------------------- 89
7.1 金觸媒的發展------------------------------------------------- 89
7.2 金觸媒的製備方法------------------------------------------- 89
7.3 金的活性位置------------------------------------------------- 93
7.4 金觸媒的擔體和尺寸效應---------------------------------- 94
7.5 金觸媒的應用------------------------------------------------- 97
7.5-1 一氧化碳氧化反應------------------------------------------ 97
7.5-2 水蒸氣轉移反應---------------------------------------------- 98
7.5-3 碳氫化合物完全氧化反應---------------------------------- 98
7.5-4 碳氫化合物選擇性氧化反應------------------------------- 98
7.5-5 甲醇部分氧化反應------------------------------------------- 100
第八章 實驗方法與裝置---------------------------------------------- 102
8.1 金觸媒的製備------------------------------------------------- 102
8.1-1 Au/MnOx觸媒的製備---------------------------------------- 102
8.1-2 Au/CuO/ZnO觸媒的製備----------------------------------- 103
8.2 擔載金觸媒的鑑定分析------------------------------------- 104
8.2-1 感應耦合電漿原子放射光譜儀(ICP-AES)分析----- 104
8.2-2 熱重分析(TGA)-------------------------------------------105
8.2-3掃描式電子顯微鏡(SEM)及元素影像分析(EDS-mapping)-------------------105
8.2-4 BET比表面積、孔隙體積及孔徑大小分佈的分析- 106
8.2-5 X-射線繞射分析(XRD) ------------------------------------106
8.2-6 穿透式電子顯微鏡(TEM) ---------------------------------106
8.2-7 X-Ray 光電子光譜儀(XPS) ------------------------------ 106
8.3 觸媒的活性測試-甲醇部分氧化反應--------------------- 107
8.4 數據的計算與實例---------------------------------------109
8.4-1 轉化率的定義與計算---------------------------------------109
8.4-2 選擇率的定義與計算---------------------------------------113
8.5 藥品、氣體及儀器設備---------------------------------- 115
8.5-1 藥品---------------------------------------------------115
8.5-2 氣體---------------------------------------------------115
8.5-3 儀器設備------------------------------------------------------- 115
第九章 Au/MnOx觸媒的結果與討論------------------------------ 118
9.1 Au/MnOx觸媒物性分析-------------------------------------118
9.1-1 Au/MnOx觸媒的製備和比表面積------------------------- 118
9.1-2 Au/MnOx觸媒熱重分析(TGA)結果-----------------------120
9.1-3 Au/MnOx觸媒X-ray繞射(XRD)結果--------------------122
9.1-4 Au/MnOx觸媒的X-射線光電子分析(XPS)-------------125
9.1-5 Au/MnOx觸媒的穿透式電子顯微鏡(TEM)分析結果- 129
9.1-6 Au/MnOx觸媒的掃描式電子顯微鏡(SEM)分析結果- 134
9.2 Au/MnOx觸媒在甲醇部份氧化反應---------------------- 134
9.2-1 金載量對反應性的影響-------------------------------------137
9.2-2 不同煅燒溫度對反應性的影響---------------------------- 137
9.2-3 不同中和劑對反應性的影響-------------------------------141
9.2-4 不同製備流程對甲醇部份氧化反應的影響------------- 143
9.2-5 不同反應溫度對甲醇部份氧化反應的影響------------- 144
第十章 Au/CuO/ZnO觸媒的結果與討論------------------------ 150
10.1 Au/CuO/ZnO觸媒的物性分析----------------------------- 150
10.1-1 Au/CuO/ZnO觸媒熱重(TGA)分析----------------------- 150
10.1-2 Au/CuO/ZnO觸媒X-ray繞射(XRD)分析--------------- 150
10.1-3 Au/CuO/ZnO觸媒的程式升溫還原(TPR)分析--------- 152
10.1-4 Au/CuO/ZnO觸媒穿透式電子顯微鏡(TEM)分析----- 157
10.2 Au/CuO/ZnO觸媒在甲醇部份氧化反應----------------160
10.2-1 不同煅燒溫度對反應性的影響---------------------------- 161
10.2-2 不同觸媒反應性的比較-------------------------------------164
10.2-3 不同反應溫度對甲醇部份氧化反應的影響------------- 167
第十一章 結論--------------------------------------------------172
參考文獻 ------------------------------------------------------174
參考文獻 Acharya, H.N., H.D. Banerjee, and N.C. Roy, Indian Patent, No. 158 579 (1986).
Agras, H. and G. Cerrella, “Copper Catalysts for the Steam Reforming of Methanol: Analysis of the Preparation Variables”, Appl. Catal. A, 45 53 (1988).
Agrell J., G. Germani, S.G. Jaras and M. Boutonnet, “Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts Prepared by Microemulsion Technique”, Appl. Catal. A, 242 233 (2003a).
Agrell J., K. Hasselbo, K. Jansson, G. Sven and J.M. Boutonnet, “Production of Hydrogen by Partial Oxidation of Methanol over Cu/ZnO Catalysts Prepared by Microemulsion Technique”, Appl. Catal. A, 211 239 (2001).
Agrell J., M. Boutonnet and J.L.G. Fierro, “Production of Hydrogen from Methanol over Binary Cu/ZnO Catalysts: Part II. Catalytic Activity and reaction pathways”, Appl. Catal. A, 253 213 (2003b).
Alejo, L., R. Lago, M.A. Pena and J.L.G. Fierro, “Partial Oxidation of Methanol to Produce Hydrogen over Cu-Zn Based Catalysts”, Appl. Catal. A, 162 281 (1997).
Amick, J.A.,“Purification of Rice Hulls As a Source of Solar Grade Silicon for Solar-Cells”, J. Electrochem. Soc., 129 864 (1982).
Andreeva D., T. Tabakova, V. Idakiev, P. Christor and R. Giovanoli, “Au/Fe2O3 Catalyst for Water-Gas Shift Reaction Prepared by Deposition-Precipitation”, Appl Catal. A, 169 9 (1998).
Andreeva D., V. Idakiev, T. Tabakova and A. Andreev, “Low-Temperature Water-Gas Shift Reaction over Au/Fe2O3”, J. Catal., 158 354 (1996).
Appleby J., F.R. Foulkes, Fuel Cell Handbook. Van Nostrand Reinhold, New York (1989) 177.
Blick, K., T.D. Mitrelias, J.S.J. Hargreaves, G.J. Hutchings, R.W. Joyner, C. J. Kiely and F. E. Wagner, Catal. Lett., 50 211 (1998).
Boar, P.L. and L.K. Ingram, “The Comprehensive Analysis of Coal Ash and Silicate Rocks by Atomic-Absorption Spectrophotometry by a Fusion Technique”, Analyst, 95 124 (1970).
Boccuzzi, F., A. Chiorini, M. Manzoli, P. Lu, T. Akita and S. Ichikawa, “Effect of Calcination Temperature on the CO Oxidation”, J. Catal., 202 256 (2001).
Bollinger, M. and M.A. Vannice, “A Kinetic and DRIFTS Study of Low-Temperature Carbon Monoxide Oxidation over Au-TiO2 Catalysts”, Appl. Catal. B, 8 417 (1996).
Bond, G.C. and S.N. Namijo, “An Improved Procedure for Estimating the Metal Surface Area of Supported Copper Catalysts”, J. Catal., 118 507 (1989).
Bond G.C. and Thompson D.T., “Gold-Catalysts Oxidation of Carbon Monoxide”, Gold Bull, 33 41 (2000).
Bone, W. A. and G. W. Andrew, Proc. Roy. Soc., 109A 459 (1925).
Brands, D.S., E.K. Poels and A. Bliek, “Ester Hydrogenolysis over Promoted Cu/SiO2 Catalysts”, Appl. Catal. A, 184 279 (1999).
Burton, R.S., R.C. Richard and S. Alpert, “Municipal Solid Waste Prolysis”, AIChE System, 70 116 (1974).
Carter, J.L., J.A. Cusumano and J.H. Sinfelt, J. Phy. Chem., 70 2257 (1966).
Cesar, D.V., C.A. Peréz, V.M.M. Salim and M. Schmal, “Stability and Selectivity of Bimetallic Cu-Co/SiO2 Catalysts for Cyclohexanol Dehydrogenation”, Appl. Catal. A, 176 205 (1999).
Cha, C. Y. and G. Parravano, J. Catal., 18 200 (1970).
Chakraverty, A., P. Mishra and H.D. Banerjee, “Investigation of Thermal Decomposition of Rice Husk”, Thermochimica Acta, 94 267 (1985).
Chambers, A., S.D. Jackson, D. Stirling and G. Webb, “Selective Hydrogenation of Cinnamaldehyde over Supported Copper Catalysts”, J. Catal., 168 301 (1997).
Chang, C.K., Y.J. Chen and C. Yeh, “Characterizations of Alumina-Supported Gold with Temperature-Programmed Reduction”, Appl. Catal. A, 174 13 (1998).
Chang, F.W., H. Y. Yu, L.S. Roselin and H.C. Yang, “Production of Hydrogen via Partial Oxidation of Methanol over Au/TiO2 Catalysts”, Appl. Catal. A, 290 138 (2005).
Chang, F.W., M.T. Tsay, M.S. Kuo and C.M. Yang, “Characterization of Nickel Catalysts on RHA-Al2O3 Composite Oxides Prepared by Ion Exchange”, Appl. Catal. A, 226 213 (2002a).
Chang, F.W., M.T. Tsay and M.S. Kuo, “Effect of Thermal Treatments on Catalyst Reducibility and Activity in Nickel Supported on RHA-Al2O3 Systems”, Thermochim. Acta, 386 161 (2002b).
Chang, F.W., M.T. Tsay and S.P. Liang, “Hydrogenation of CO2 over Nickel Catalysts Supported on Rice Husk Ash Prepared by Ion Exchange”, Appl. Catal. A, 209 217 (2001).
Chang, F.W., T.J. Hsiao and J.D. Shih, “Hydrogenation of CO2 over a Rice Husk Ash Supported Nickel Catalyst by Deposition- Precipitation”, Ind. Eng. Chem. Res., 37 3838 (1998).
Chang, F.W., T.J. Hsiao, S.W. Chang and J.J. Lo, “Nickel Supported on Rice Husk Ash-Activity and Selectivity in CO2 Methanation”, Appl. Catal. A, 164 225 (1997).
Chang, F.W., W.Y. Kuo and K.C. Lee, “Dehydrogenation of Ethanol over Copper Catalysts on Rice Husk Ash Prepared by Incipient Wetness impregnation”, Appl. Catal. A, 246 253 (2003).
Chang, H.F., M.A. Saleque, W.S. Hsu and W. Lin, “Characterization and Dehydrogenation Activity of Cu/Al2O3 Catalysts Prepared by Electroless Plating Technique”, J. Molecular Catalysis, 109 249 (1996).
Chen, H.W., J.M. White and J.G. Ekerdt, “Electronic Effect of Supports on Copper Catalysts”, J. Catal., 99 293 (1986).
Chen, J.M. and F.W. Chang, “Rice Husk as a Source of High Purity Carbon/Silica to Producing Silicon Tetrachloride”, Proc. Natl. Sci. Counc., 15 412 (1991a).
Chen, J. M. and F.W. Chang, “The Chlorination Kinetics of Rice Husk” , Ind. Eng. Chem. Res., 30 2214 (1991b).
Cheng, W.H., “Deactivation and Regeneration of Cu/Cr Based Methanol Decomposition Catalysts”, Appl. Catal. B, 7 127 (1995).
Cheng, W., H.H. Kung, Methanol Production and Use, Marcel Dekker, New York, 1994.
Chong, S.V., M.A. Barteau, H. Idriss, Catal. Today, 63 283 (2003).
Choudhary, T.V., C. Sivadinarayana, C.C. Chusuei, A.K. Datye and J.P. Fackler, Goodman D.W., “CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex”, J. Catal., 207 247 (2002).
Chung, M., D. Moon, K. Park and S. Ihm, J. Mol. Catal. A, 113 507 (1996).
Cubeiro, M.L. and J.L.G. Fierro, “Partial Oxidation of Methanol over Supported Palladium Catalysts”, Appl Catal A, 168 307 (1998).
Cunningham, D.A.H., W. Vogel and M. Haruta, “Negative Activation Energies in CO Oxidation over an Icosahedral Au/Mg(OH)2 Catalyst”, Catalysis Letters, 63 43 (1999).
Date, M. and M. Haruta, “Moisture Effect on CO Oxidation over Au/TiO2 Catalyst”, J. Catal., 201 221 (2001).
Date, M., Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi and M. Haruta, “Performance of Au/TiO2 Catalyst under Ambient Conditions”, Catalysis Today, 72 89 (2002).
Dietz, W.A., ”Response Factors for Gas Chromatographic Analyses”, J. of G. C. February: 68 (1967)
Emont, B., J.B. Hansen, S.J. Jorgensen, B. Holein and R. Peters, “Compact Methanol Reforming Test for Fuel-Cell Powered Light-Duty vehicles”, J. Power Sources, 71 288 (1998).
Epling, W.S., G.B. Hoflund, J.F. Weaver, S. Tsubota and M. Haruta, “Surface Characterization Study of Au/Fe2O3 and Au/Co3O4 Low-Temperature CO Oxidation Catalysts”, J. Phys. Chem., 100 9929 (1996).
Evans, J.W., M.S. Winwright, A.J. Bridgewater and D.J. Young, “On the Determination of Copper Surface Area by Reaction with Nitrous Oxide”, Appl. Catal., 7 75 (1983).
Franckerts, J. and G.F. Froment, “Kinetic Study of the Dehydrogenation of Ethanol”, Chem. Eng. Sci., 19 807 (1964).
Galvagno, S., G. Parravano and B. Bunseuges, Phys. Chem., 83 894 (1979).
Gardner, S.D., G.B. Hoflund, D.R. Schryer, Schryer J., B.T. Upchurch and E. J. Kielin, “Catalytic Behavior of Noble Metal/Reducible Oxide Materials for Low-Temperature Carbon Monoxide Oxidation. 1. Comparison of Catalyst Performance” Langmuir, 7 2135 (1991a).
Gardner, S.D., G.B. Hoflund, M.R. Davidson, H.A. Laitinen, D.R. Schryer and B.T. Upchurch, “Catalytic Behavior of Noble Metal/Reducible Oxide Materials for Low-Temperature Carbon Monoxide oxidation. 2. Surface Characterization of Gold/Manganese Oxide”, Langmuir, 7 2140 (1991b).
Giamello, E., B. Fubini, P. Lauro and A. Bossi, J. Catal., 18 108 (1970).
Gonzalez-Elipe, A.R., G. Munuera and J.P. Eepinos, “XPS Intensities and Binding Energy Shifts as Metal Dispersion Parameters in Ni/SiO2 Catalysts”, Surf. Interface Anal., 16 375 (1990).
Goodman, D.W., M. Valden, S. Pak and X. Lai, Catal. Lett., 56 10 (1998).
Grisel, R.J.H. and B.E. Nieuwenhuys, “A Comparative Study of the Oxidation of the Oxidation of CO and CH4 over Au/MOx/Al2O3 Catalysts", Catalysis Today, 64 69 (2001).
Grisel, R.J.H., C.J. Weststrate, A. Goossens, M. W.J. Craje, A.M. Van der kraan and B.E. Nieuwenhuys, Catal. Today, 72 123 (2002).
Grisel, R.J.H., P.J. Kooyman and B.E. Nieuwenhuys,” Influence of the Preparation of Au/Al2O3 on CH4 Oxidation Activity”, J. Catal., 191 430 (2000).
Grunwaldt, J. and A.Baiker, “Gold/Titania Interfaces and Their Role in Carbon Monoxide Oxidation”, J. Phys. Chem. B, 103 1002 (1999).
Guerreiro, E.D., O.F. Gorriz, J.B. Rivarola and L.A. Arrua, “Characterization of Cu/SiO2 Catalysts Prepared by Ion Exchange for Methanol Dehydrogenation”, Appl. Catal. A, 165 259 (1997).
Guerreiro, E.D., O.F. Gorriz, G. Larsen and L.A. Arrua, “Cu/SiO2 Catalysts for Methanol to Methyl Formate Dehydrogenation A comparative Study Using Different Preparation Techniques”, Appl. Catal. A, 204 33 (2000).
Guerreiro-Ruiz, A., I. Rodriguez-Ramos and J.L.G. Fierro, Appl. Catal., 72 119 (1991).
Gusman, J. and B.C. Gates, “Oxidation States of Gold in MgO-Supported Complexes and Clusters: Characterization by X-ray Absorption Spectroscopy and Temperature-Programmed Oxidation and Reduction”, J. Phys. Chem. B, 107 2242 (2003).
Haruta, M., “Size- and Support-Dependency in the Catalysis of Gold”, Catalysis Today, 36 153 (1997a).
Haruta, M., Catal. Surveys Japan, 1 61 (1997b).
Haruta, M., T. Kobayashi, H. Sano and N. Yamada, “Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at Low Temperature”, Chem. Lett., 2 405 (1987).
Haruta, M. and M. Date, “Advances in the Catalysis of Au Nanoparticles”, Appl. Catal. A, 222 427 (2001).
Haruta, M, N. Yamada, T. Kobayashi and S. Iijima, “Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide”, J. Catal., 115 301 (1989).
Haruta, M., S. Tsubota, T. Kobayashi, H. Kageyama, J.M. Genet and B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, -Fe2O3, and Co3O4”, J. Catal., 144 175 (1993).
Hayashi, T. and M. Haruta, “Effect of an Loading on Selectivity in the Reaction of Propylene on Au/TiO2 Catalyst”, Shokubai, 37 75 (1995).
He, C., H.R. Kunz and J.M. Fenton, “Selective Oxidation of CO in Hydrogen under Fuel Cell Operating Conditions”, The Electrochem. Soc., 148 A1116 (2001).
Hindustan Lever Ltd., Indian Patent , No.147090 (1979).
Hodege, C.N. and L.C. Roselaar, J. Appl. Chem. Biotechnol., 25 609 (1975).
Hoflund, G.B. and S.D. Gardner, “Effect of CO2 on the Performance of Au/MnOx and Pt/SnOx Low-Temperature CO Oxidation Catalysts”, Langmuir, 11 3431 (1995a).
Hoflund, G.B., S.D. Gardner, D.R. Schryer, B.T. Upchurch and E.J. Kielin, “Au/MnOx Catalytic Performance Characteristics for Low-Temperature Carbon Monoxide Oxidation”, Appl. Catal. B, 6 117 (1995b).
Huang, T.J. and S. Chren, “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Appl Catal, 40 43 (1986a).
Huang, T J. and S.W. Wang, Appl. Catal., 24 287 (1986b).
Hutchings, G.J., Gold Bull, 29 123 (1996).
Hutchings, G.J., M.R.H. Siddiqui, A. Burrows, C.J. Kiely and R. Whyman, “High-activity Au/CuO-ZnO catalysts for the oxidation of carbon monoxide at ambiment temperature”J. Chem. Soc., Faraday trans., 93 187 (1997).
Ibrahim, D.M. and S.A. EL-Hemaly, “Thermal Treatment of Rice-Husk Ash: Effect of Time Firing on Pore Structure and Crystallite Size”, Thermochimica Acta, 37 347 (1980).
Idem, R.O., N.N. Bakhshi, “Production of Hydrogen from Methanol over Promoted Coprecipitated Cu-Al Catalysts: the Effects of Various Promoters and Catalyst Activation Methods”, Ind. Eng. Chem. Res., 34 1548 (1995).
Inui, K., T. Kurabayashi, S. Sato and N. Ichikawa, J. Mol. Catal. A, 216 147 (2004).
Iwasa, N., N. Kudo, H. Takahashi, S. Masuda, N. Takezawa, Catal. Lett., 19 211 (1993).
Jackson, S.D., F.J. Robertson and J. Willis, “A Study of Copper/silica Catalysts: Reduction, Adsorption and Reaction”, J. Mol. Catal., 63 255 (1990).
Jeon S.G. and Chung J.S. “Preperation and Characterization of Silica-Supported Copper Catalysts for the Dehydrogenation of Cyclehexanol to Cyclohxanone”, Appl. Catal A., 115 29 (1994).
Jiang, C.J., D.A. Trimm, M.S. Wainwright, N.W. Cant, Appl. Catal. A, 97 81 (1994).
Kang, Y.M. and B.Z. Wan, “Pretreatment Effect of Gold Iron Zeolite-Y on Carbon-Monoxide Oxidation”, Catal. Today, 26 59 (1995).
Kenvin, J.C. and M.G. White, J. Catal., 130 447 (1991).
Keuler, J.N., L. Lorenzen and S. Miachon, Appl. Catal. A, 218 171 (2001).
Kim K.S, Winograd N., “X-ray Photoelectron Spectroscopic Binding Energy Shifts due to Matrix in Alloys and Small Supported Metal particles”, Chem. Phys. Lett., 30 91 (1975).
Klbag, S.S., P.K. Basu and N.V. Bringi, Indian Patent , No.146570 (1979).
Knell, A., P. arnickel, A. Baiker and A. Wokaun, “CO Oxidation over Au/ZrO2 Catalysts: Activity, Deactivation Behavior, and Reaction Mechanism”, J. Catal., 137 306 (1992).
Kobayashi, H., N. Takegawa, C. Minochi and K. Takahashi, Chem. Lett., 1197 (1980).
Kohler, M.A., H.E. Curry-Hyde, A.E. Hughes, B.A. Sexton and N.W. Cant, “The Structure of Cu/SiO2 Catalysts Prepared by the Ion- Exchange Technique”, J. Catal., 108 323 (1987a).
Kohler, M.A., J.C. Lee, D.L. Trimm, M.W. Cant and M.S. Wainwright, “Preparation of Cu/SiO2 Catalysts by the Ion-Exchange Technique”, Appl. Catal., 31 309 (1987b).
Kozlova, A.P., A.I. Kozlov, S. Sugiyama, Y. Matsui, K. Akasura and Y. Iwasawa, “Study of Gold Species in Iron-Oxide-Supported Gold Catalysts Derived from Gold-Phosphine Complex Au(PPh3)(NO3) and As-Precipitated Wet Fe(OH)3”, J. Catal., 181 37 (1999).
Kumar, R., S. Ahmed and M. Yu, Am. Chem. Soc. Div. Fuel Chem., 38 1741 (1993).
Kumar, R., S. Ahmed, M. Krumplet, K.M. Myles, Argone National Laboratory, Report ANL- 92/31, Argone, IL, USA, 1992.
Kung, H.H., M.C. Kung and C.K. Costello, “Supported Au Catalysts for Low Temperature CO Oxidation”, J. Catal., 216 425 (2003).
Kung, M.C., C.K. Costello, H.S. Oh, Y. Wang and H.H. Kang, “Nature of the Active Site for CO Oxidation on Highly Active Au/Al2O3”, Appl Catal A, 232 159 (2002).
Lee, J.C., D.L. Trimn, M.A. Kohler, M.S. Wainwright and N. W. Cant, “Investigation of Copper on Silica Catalysts Prepared by Ion Exchange Method”, Catal. Today, 2 643 (1988).
Lee, S.J., A. Gavriilidis, Q.A. Pankhurst, A. Kyek, F.E. Wagner, P.C.L. Wong and K. L. Yeung, “Effect of Drying Conditions of Au-Mn Co-Precipitates for Low-Temperature CO Oxidation”, J. Catal., 200 298 (2001).
Liang, K.S., W.R. Salaneck and I.A. Aksay, “X-ray Photoemission Studies of Thin Gold Films”, Solid State Commun., 19 329 (1976).
Lin, W.H. and H.F. Chang, “A Study of Ethanol Dehydrogenation Reaction in a Palladium Membrane Reactor”, Catal. Today, 97 181 (2004).
Liou, T.H., F.W. Chang and J.J. Lo, “Pyrolysis Kinetics of Acid-Leached Rice Husk”, Ind. Eng. Chem. Res., 36 568 (1997).
Liou, T.H. and F.W. Chang, “The Nitridation Kinetics of Pyrolyzed Rice Husk”, Ind. Eng. Chem. Res., 35 3375 (1996).
Liguras, D.K., K. Goundani and X.E. Verykios, “Production of Hydrogen for Fuel Cells by Catalytic Partial Oxidation of Ethanol over Structured Ru Catalysts”, Int. J. Hydrogen Energy, 29 419 (2004).
Lin, S.P., M. Bollinger and M.A. Vannice, Catal. Lett., 17 245 (1993).
Lindner, B., K. Sjomstrom, “Operation of an Internal Combustion Engine: Lean Conditions with Hydrogen Produced in an Onboard Methanol Reforming Unit”, Fuel, 63 1485 (1984).
Longgaback, J.R. and F. Banner, Industrial and Laboratory Pyrolyusis, Chap. 27, 476 (1976).
Marchi, A.J., J.L.G. Fierro, J. Santamaría and A. Monzón, “Dehydrogenation of Isopropylic Alcohol on Cu/SiO2 Catalyst: a Study of the Activity Evolution and Reactivation of the Catalyst”, Appl. Catal. A, 142 375 (1996).
Mavrikakis, M., P. Stoltze and J.K. Norskov, “Making gold less noble”, Catal. Letters, 64 101 (2000).
Mile, B.D. Stirling, M.A. Zammitt, A. Lovell and M. Webb, ”The Location of Nickel Oxide and Nickel in Silica-Supported Catalysts: Two Forms of “NiO” and the Assignment of Temperature Programmed Reduction Profiles”, J. Catal., 114, 217 (1988).
Minico, S., S. Scire, C. Crisafulli, R. Maggiore and S. Galvagmo, “Catalytic Combustion of Volatile Organoc Compounds on Gold/Iron oxide catalysts”, Appl. Catal. B, 28 245 (2000).
Murcia-Mascaros, S., R.M. Navarro, L. Gomez-Sainero, U. Costantino, M. Nocchetti and J. L. G. Fierro, J. Catal., 198 338 (2001).
O’Connor, R. P., E.J. Klein and L.D. Schmidt, “High Yields of Synthesis Gas by Millisecond Partial Oxidation of Higher Hydrocarbons”, Catalysis letters, 70 99 (2000).
Oetjen, H.F., V.M. Schmidt, U. Stimming and F. Trila, “Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas”. J. Electrochem Soc., 143 3838 (1996).
Okumura, M. T., S. Tsubota, M. Iwamoto and M. Harata, Chem. Lett., 315 (1998).
Okumura, M.T. and M. Harata, “Hydrogenation of 1.3-Butadiene and of Crotonaldehyde over Highly Dispersed Au Catalysts”, Catal. Today, 74 265 (2002).
Park, E.D. and J.S. Lee, “Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts”, J. Catal., 186 1(1999).
Patel, M., A. Karera and P. Prasanna, “Effect of Thermal and Chemical Treatment on Carbon and Silica Contents in Rice Husk”, J. Master. Sci., 20 4387 (1987).
Pepe, F., C. Angeletti, S.D. Rossi and M.L. Jacono, “Catalytic Behavior and Surface Chemistry of Copper/Alumina Catalysts for Isopropanol Decomposition” J. Catal., 91 69 (1985).
Peppley, B.A., J.C. Amphlett, L.M. Kearns and R.F. Mann, “Methanol-Steam Reforming on Cu/ZnO/Al2O3. Part 1: the Reaction Network”, Appl. Catal. A, 179 21 (1999).
Petterson, L. and K. Sjomstrom, Int. J. Hydrogen Energy, 16 671 (1991).
Richardson, J.T. and R.J. Dubus, “Crystallite Size Distributions of Sintered Nickel Catalysts”, J. Catal., 57, 417 (1979).
Pireaux, J.J., M. Chtaib, J.P. Delrue, P.A. Thiry, M. Liehr and R. Caudano, Sur. Sci., 141 221 (1984).
Riverors, H. and C. Garz, “Rice Husks as a Source of High Purity Silica”, J.Master. Sci., 22, 4665 (1987).
Sakurai, K., A. Ueda, T. Kobayashi and M. Haruta, Chem. Commun., 271 (1997).
Sakurai, K. and M. Haruta, “Synergism in Methanol Synthesis from Carbon Dioxide over Gold Catalysts Supported on Metal Oxides”, Catal. Today, 29 361 (1996).
Santacesaria, E., S. Carra, Appl. Catal., 5 345 (1983).
Scirè, S., S. Minicò, C. Crisafulli, C. Satriano and A. Pistone, “Catalytic Combustion of Volatile Organic Compounds on Gold/Cerium Oxide Catalysts”, Appl. Catal. B, 40 43 (2003).
Schmitz, D., D.P. Eyman, K. Gloer, “Highly Active Methanol Dissociation Catalysts Derived from Supported Molten Salts”, Energy and fuels, 8 729 (1994).
Sengupta, G., D.K. Gupta, M.L. Kundu, and S.P. Sen, J. Catal., 67, 223 (1983).
Shiau, C.Y. and S.T. Liaw, “Kinetics of Dehydrogenation of n-Butanol over Copper-Barium Catalyst”, CIChE J., 21 85 (1990).
Shibuta, M., N. Kawata, T. Masumoto and H. Kimura, Chem. Lett., 1605 (1985).
Shimokawabe, M., N. Takezawa and H. Kobayashi, “Characterization of Copper-Silica Catalysts Prepared by Ion Exchange”, Appl. Catal., 2 379 (1982).
Shimokawabe, M., N. Takezawa and H. Kobayashi, “Tempaerature Programmed Reduction of Copper-Silica Catalysts Prepared by Ion Exchange”, Bull. Chem. Soc. Jpn., 56 1337 (1983).
Sodesawa, T., “Dynamic Change in Surface Area of Cu in Dehydrogenation of Methanol over Cu-SiO2 Catalyst Prepared by Ion Exchange Method”, React. Kinet. Catal. Lett., 24 259 (1984).
Srinivasan, B. and S.D. Gardner, “Investigation of the Gas Sensing properties of Au/MnOx: Response to CO Exposure and Comparison to Pt/SnO2”, Surf. Interface Anal., 26 1035 (1998).
Suzuki, K. ,S. Velu, T. Osaki, “Selective Production of Hydrogen by Partial Oxidation of Methanol over catalystsderived from Cu/Zn/Al -Layered Double Hydroxides”, Catalysis Letters, 62 159 (1999).
Takezawa, N., N. Iwasa, “Steam Reforming and Dehydrogenation of Methanol: Difference in the Catalytic Functions of Copper and Group VIII Metals”, Catal. Today, 36 45 (1997).
Tillman, D.A., Wood as an Energy Resource. Academic New York, 65 (1987).
Torres Sanchez, R.M., A. Ueda, K. Tanaka and M. Haruta, “Selective Oxidation of CO in Hydrogen over Gold Supported on Manganese Oxides” J. Catal., 168 125 (1997).
Toupance, T., M. Kermarec and C. Louis, “Metal Particles Size in Silica-Supported Copper Catalysts. Influence Condition of Preperation and of Thermal Pretreatments”, J. Phys. Chem. B, 104 965 (2000).
Tsay, M.T. and F.W. Chang, “Characterization of Rice Husk Ash-Supported Nickel Catalysts Prepared by Ion Exchange”, Appl. Catal. A, 203 15 (2000).
Tsay, M.T. and F.W. Chang, “Characterization and Reactivity of RHA-Al2O3 Composite Oxides Supported Nickel Catalysts”, Catal. Commun., 2 233 (2001).
Tsuruya, S., M. Tsukamoto, M. Watanabe and M. Masai, J. Catal., 93 303 (1985).
Tu, Y.J. and Y.W. Chen, Ind. Eng. Chem. Res., 37 2618 (1998).
Tu, Y.J., Y.W. Chen and C. Li, “Characterization of Unsupported Copper-Chromium Catalysts for Ethanol Dehydrogenation”, J. Mol. Catal., 89 179 (1994).
Valden, M., X. Lai and D.W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties”, Science, 281 1647 (1998).
van der Grift, C.J.G., A. Mulder and J.W. Geus, “Characterization of Silica-Supported Copper Catalysts by Means of Temperature- Programmed Reduction”, Appl. Catal., 60 181 (1990a).
van der Grift, C.J.G., P.A. Elberse, A. Mulder and J.W. Geus, “Preparation of Silica-Supported Copper Catalysts by means of Deposition-Precipitation”, Appl. Catal., 59 275 (1990b).
van den Oetelaar, L.C.A., A. Partridge, P.J.A. Stapel, C.F.J. Flipse and H. H. Brongersma, “A Surface Science Study of Model Catalysts. 1. Quantitative Surface Analysis of Wet-Chemically Prepared Cu/SiO2 Model Catalysts”, J. Phys. Chem. B, 102 9532 (1998).
Velu, S., K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective Production of Hydrogen for Fuel Cells via Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts”, Appl Catal A, 213 47 (2001).
Velu, S., K. Suzuki and T. Osaki1, “Selective Production of Hydrogen by Partial Oxidation of Methanol over Catalysts Derived from CuZnAl Layered Double Hydroxides”, Catalysis Letters, 62 159 (1999).
Venugopal, A., J. Aluha, M.S. Scurrell, Catal. Lett., 90 1 (2003).
Venugopal, A., M.S. Scurrel, “Low Temperature Reductive Pretreatment of Au/Fe2O3 Catalysts, TPR/TPO Studies and Behaviour in the Water-Gas Shift Reaction”, Appl. Catal. A, 258 241 (2004).
Visco, A.M., A. Donato, C. Milone and S. Galvagno, “Catalytic Oxidation of Carbon Monoxide over Au/Fe2O3 Preparations”, React. Kinet. Catal. Lett., 61 219 (1997).
Wachs, I.E., Gold Bull., 16 98 (1983).
Wang, G.Y., J.Y. Yu, H.L. Lian, N. Bai, W. X. Zhang and D. Z. Jiang, Chem. J. Chin. Univ., 22 431 (2001).
Wang, G.Y., W.X. Zhang, D.Z. Jiang, T.H. Wu, Acta Chim. Sin., 58 1557 (2000).
Wang, G.Y., W.X. Zhang, H.L. Lian, D.Z. Jiang, T.H. Wu, “Effect of Calcination Temperatures and Precipitant on the Catalytic Performance of Au/ZnO Catalysts for CO Oxidation at Ambient Temperature and in Humid Circumstances”, Appl. Catal. A, 239 1 (2003a).
Wang, Z., W. Wang, G. Lu, “Studies on the Active Species and on Dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for Hydrogen Production via Methanol Partial Oxidation”, Int. J. Hydrogen Energy, 28 151 (2003b).
Wang, Z., J. Xi, W. Wang and G.J. Lu, “ Selective Production of Hydrogen by Partial Oxidation of Methanol over Cu/Cr Catalysts”, J. Mol. Catal. A Chem. 191 123 (2003c).
Waters, R.D., J.J. Weimer and J.E. Smith, Catal. Lett., 30 181 (1995).
Wolf, A. and F. Schuth, “A Systematic Study of the Synthesis Conditions for the Preparation of Highly Active Gold Catalysts”, Appl. Catal. A, 226 1 (2002).
Yoshida, S.Y., Inishi and K. Kitagishi, “Chemical Forms, Mobility and Depostion of Silicon in Rice Plant”, Soil Science and Plant Nutrition, 8 15 (1962).
Yuan, Y., A.P. Kozlova, K. Asakara, H. Wan, K. Tasin and Y. Iwasawa, “Supported Au Catalysts Prepared from Au Phosphine Complexes and As-Precipitated Metal Hydroxides: Characterization and Low-Temperature CO Oxidation”, J. Catal., 170 191 (1997).
Zanella, S., C. Giorgio, C. Shin, R. Hentry and C. Louis, “Characterization and Reactivity in CO Oxidation of Gold Nanoparticles Supported on TiO2 Prepared by Deposition-Precipitation with NaOH and Urea”, J. Catal., 222 357 (2004).
Zhang, J., Y. Wang, B. Chen, C. Li, D. Wu, X. Wang, “Selective Oxidation of CO in Hydrogen Rich Gas over Platinum-Gold Catalyst Supported on Zinc Oxide for Potential Application in Fuel Cell”, Energy Convers. Manage., 44 1805 (2003).
吳榮宗, “工業觸媒概論” 增訂版, 興國出版社 (1980).
李秉傑, 邱宏明, 王亦凱, 合譯 “非均勻系催化原理與應用” , 渤海堂文化事業有限公司 (1993) .
林文雄, 鄒岳樺, 張新福, “無電鍍銅觸媒之銅表面積及對醇類之脫氫反應之影響” , 技術學刊, 12 463 (1997).
姚品全, “淺談銅觸媒” , 觸媒與製程, 8(2) 47 (2000).
陳永杰, 洪華聖, 葉君棣, “支撐性金觸媒在甲醇部份氧化製氫反應上的應用”, 第十九屆觸媒與反應工程研討會 (2001).
郭茂穗, “以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究” , 國立中央大學化學工程研究所博士論文 (2003).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2006-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明