博碩士論文 90346002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:44.192.27.11
姓名 黃慧貞(Hui-Chen Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究
(The influence of distinctive soil organic matter composition and content on the sorption of nonionic organic compounds)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二十世紀柒零年代以來,大量農藥及工業有機廢棄物開始危害環境,許多未經處理即排入環境中之有機污染物造成土壤污染。土壤有機質之來源互異,組成複雜,對於非離子有機污染物在土壤中之傳輸行為具有決定性之影響。
本研究分為三大主題來探討土壤有機質之特殊組成對於非離子有機污染物傳輸行為之影響。第一部份乃探討土壤有機質中之高表面積碳黑物質(HSACM)對於低濃度之非離子有機污染物非線性吸附行為。本研究以物理方式替代常用之氧化或熱處理方式來分離有機質中碳黑物質,並以土壤及HSACM進行非離子有機污染物之吸附行為研究,結果中發現HSACM為一高表面積碳黑成份,是有機質中對非線性吸附造成貢獻之主要因子,系統中存在雙重吸附質時,會抑制HSACM之吸附,表示HSACM對非離子有機污染物之作用機制為一吸附作用;此部份並以高分子模擬有機質之官能基,進行氣態吸附實驗,實驗結果發現在低濃度下,有機物之極性及有機質中之官能基會影響吸附行為。
第二部份探討有機質芳香性組成對於不同結構之非離子有機化
合物吸附行為所造成之影響。以已知組成之染料或界面活性劑來模擬真實之土壤有機質結構,以簡化有機質複雜組成之變因。實驗選用兩組不同結構但具有近似水溶解度之化合物來進行,研究結果顯示,有機質組成和有機污染物之結構相近者,有機污染物將有較高的分佈係數。溶解度參數被用來解釋不同有機污染物在不同組成之土壤有機質中之的分佈行為,溶解度參數相近之有機化合物間會有較大之分佈係數。
第三部分的研究主題為探討低含量土壤有機質所形成之吸附性表面其吸附非離子有機化合物時所顯現之特異分佈係數值,實驗選有四種苯環化合物及有機氯農藥進行,研究結果指出,有機質在單層吸附時,形成吸附表面的行為和一般分佈作用不同,土壤無機相在有機質單層包覆時會影響有機化合物之分佈作用,使非離子有機污染物有較大之分佈係數。
摘要(英) Since 1970, unlimited usage of pesticides and organic compounds leads to soil contamination. The compositions of soil organic matter originated from various areas were disparity and affect the transportation of nonionic organic compounds (NOCs) in soil critically.
This study explores the influences of specific composition and content in soil organic matter (SOM) on the fates of organic compounds in soil. The first part investigated the contribution of high-surface-area carboneous material (HSACM) to nonlinear sorption at low relative concentration of nonionic organic compounds. The physical non-destructive method was substituted for oxidation or thermal treatment to isolate the HSACM. The sorption of NOCs to soils and HSACM was investigated. The BET data shows the high surface area of HSACM. The existent of HSACM contributed significantly to nonlinear sorption of SOM at low relative concentration of nonionic organic compounds. In binary-solute system, the uptake of a solute by soils at low NOCs concentration may be suppressed by other solutes (i.e., cosolutes). The competitive sorption demonstrated that the mechanism responsible for the uptake of NOCs by HSACM is attributed to adsorption but partitioning. In order to evaluate the effect of specific functional groups in SOM on the adsorption of organic compounds, especially at low pressure, we chose polymers with known functional groups as the adsorbents in this experiment to simplify the complex characteristics of soil organic phase. In all experimental data, the adsorption isotherms show nonlinearity with concave-downward curvatures at low relative pressure but exhibit a linear shape at higher pressure. The nonlinearity of isotherms coincides with solute polarity. The sorption capacities are greater for polar solutes than for nonpolar solutes. The nonlinear capacity increases progressively with increasing solute polarity for other solutes.
The second part elucidated the influences of solid-phase organic constituents on the partition of aliphatic and aromatic organic contaminants. The influence of natural organic matter (NOM) constituents on contaminant distribution coefficients was evaluated by determining the Koc values of aromatic and aliphatic organic compounds (solutes) with clays modified with both aromatic- and aliphatic-rich organic constituents. The studied compounds consisted of naphthalene, phenanthrene, n-pentane, and 2,3,4-trimethylmethane; the solid samples comprised two clays with little organic content, kaolinite and Ca-montmorillonite. For solutes of comparable water solubilities, the organic-carbon normalized distribution coefficients (Koc) of the aliphatic solutes between sorbed aliphatic organic matter and aqueous solution slightly exceed those of the aromatic solutes. By contrast, the aromatic solutes exhibited higher Koc values than did the aliphatic compounds with sorbed aromatic-rich organic matter. The difference in Koc values could be attributed to either comparable solubility parameters or the difference in the chemical structure between nonionic organic solutes and specific components of the simulated NOM.
The objective of last part was to investigate the NOCs uptake to soils with low content SOM. The extraordinary high Koc values of NOCs uptake to soils with low SOM content were research. The influence of SOM contents on contaminant distribution coefficients was evaluated by determining the Koc values of BTEX and organic-chloride pesticides (solutes) with clays modified with aromatic dyes. The experimental data shows the uptake of NOCs to soil with extremely low organic matter content is quiet different from partitioning. The uptake of NOCs to mineral coating with a thin-slice SOM will be affected by mineral. The adsorption mechanism will increase the Koc values of NOCs.
關鍵字(中) ★ 吸附表面
★ 芳香性
★ 特定作用力
★ 碳黑物質
★ 土壤有機質
關鍵字(英) ★ specific interaction
★ soil organic matter
★ High-surface-area carboneous material
★ sorptive surface
★ aromatic
論文目次 第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 4
第二章 文獻回顧 5
2-1 土壤 5
2-1-1 土壤有機質 5
2-1-2 土壤陽離子交換當量(CEC) 6
2-1-3 土壤表面積 8
2-2 土壤污染 10
2-3 吸附理論背景 13
2-3-1 無機質、有機質及水 13
2-3-2 土壤-雙重吸附質 15
2-4 吸附理論 17
2-4-1 Freundlich 吸附方程式 17
2-4-2 Langmuir吸附方程式 18
2-4-3 BET吸附方程式 20
2-4-4 Polanyi Potential Theory 21
2-4-5 氣態等溫吸附線 22
2-5 土壤之氣相吸附 26
2-5-1 氮氣吸附等溫線及固體表面積 26
2-5-2 水及有機蒸汽之吸附 27
2-5-3 影響土壤吸附有機污染物的因子 28
2-5-3-1 黏土礦物的差異 29
2-5-3-2 不同有機污染物的影響 31
2-5-3-3 水份之影響 32
2-5-3-4 土壤有機質的影響 34
2-5-3-5 溫度的影響 35
2-6 土壤之水相吸附 36
2-6-1 有機碳分佈常數(Koc) 37
2-6-2 水溶解度 38
2-7 低濃度有機污染物之吸附 39
2-7-1 Glassy-Rubbery SOM Model 40
2-7-2 Internal Hole Model 41
2-7-3 HSACM-SI Model 42
2-8 芳香性對吸附行為之影響 52
2-8-1 分子內聚能密度與溶解度參數 54
2-9 低有機質土壤之吸附行為 58
第三章 研究內容、架構及設備 59
3-1 研究架構 59
3-2 研究內容 59
3-2-1 HSACM純化方法 62
3-2-2 土壤HSACM含量測定 63
3-2-3 吸附平衡實驗 65
3-2-4 氣態吸附實驗 67
3-2-5 土壤對界面活性劑或染料之吸附平衡實驗 70
3-2-6 土壤-水-界面活性劑系統中對NOCs之吸附平衡實驗 70
3-2-7 非離子性有機污染物之Koc計算 71
3-3 研究設備 73
3-3-1 電子天平 73
3-3-2 水平震盪器 73
3-3-3 高速離心機 74
3-3-4 氣相層析儀-火焰離子化偵測器或電子捕捉偵測器 74
3-3-5 積分儀 75
3-3-6 UV分光光度計 75
3-3-7 總有機碳分析儀 75
3-3-8 氮氣吸附孔隙儀(ASAP) 75
3-3-9 X光繞射儀(XRD) 78
3-3-10 場放射掃描式電子顯微鏡(SEM+EDS) 80
3-3-11 OC/EC Carbon Analyzer 80
3-4 研究材料 81
3-4-1 土壤 81
3-4-2 有機化合物 82
3-4-2-1 非離子有機化合物 82
3-4-2-2 高分子聚合物 86
3-4-2-3 染料 87
3-4-2-4 界面活性劑 90
3-4-2-5 其它溶劑 91
3-4-2-6 其它 92
第四章 結果與討論 93
4-1 碳黑物質分析結果 93
4-1-1 表面分析 95
4-1-2 XRD及SEM 100
4-2 低濃度非離子有機化合物吸附等溫線 103
4-2-1 各種吸附劑對液相低濃度非離子有機化合物吸附結果 103
4-2-2 碳黑物質對氣相低濃度非離子有機化合物之吸附結果 106
4-3 不同官能基非離子有機化合物之氣態吸附 110
4-3-1 吸附劑基本性質 111
4-3-2 不同吸附劑對環己烷的吸附等溫線 115
4-3-3 不同吸附劑對苯的吸附等溫線 117
4-3-4 不同吸附劑對氰甲烷的吸附等溫線 119
4-3-5 不同吸附劑對甲醇的吸附等溫線 119
4-4 有機聚合物官能基對低濃度吸附行為之影響 122
4-4-1 低相對壓力下非離子有機化合物之氣態吸附等溫線 122
4-4-2 吸附質極性對非線性吸附行為之影響 127
4-5 不同有機化合物模擬土壤有機質 130
4-5-1 有機碳含量計算 131
4-5-2 溶解度參數之計算 132
4-5-3 吸附等溫線 134
4-6 不同土壤有機質組成對分佈行為之影響 140
4-6-1 非離子有機污染物於染料或界面活性劑系統之吸附等溫線 140
4-6-2 以多苯環染料模擬土壤有機質 147
4-6-3 以直鏈型界面活性劑模擬土壤有機質 151
4-6-4 溶解度參數對分佈作用之探討 152
4-7 低有機質含量土壤吸附行為之探討 155
第五章 結論與建議 159
5-1 結論 159
5-2 建議 163
參考文獻 164
參考文獻 [1] Bohn, H. L., McNeal , B. L., O'Connor G. A. “Soil Chemistry”, New York: Wiley, 7nd Ed., (1985)
[2] Zhou, H., Li, H., Xu, O. “Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters”, Environ. Sci. Technol., 29, 1401-1406 (1995)
[3] Farar, D.M., Coleman. J. D. “The correlation of surface area with other properties of nineteen British clay soil”, Soil Sci., 18, 118-124 (1967)
[4] Chiou, C. T., Lee, J.-F., Boyd, S. A. “The Surface Area of Soil Organic Matter”, Environ. Sci. Technol., 24, 1164-1166 (1990)
[5] Brady, N. C. “The Nature and Properties of Soils” Macmillan, New York, 8th Ed., 11-14 (1974)
[6] Stark, F. L. “Investigations of chloropicrin as a soil fumigant” New York (Cornell) Agric. Ezp. Stn. Mem. 178, 1-61 (1948)
[7] Hanson, W. J., Nex, R. W. “Diffusion of ethylene dibromide in soils” Soil Sci. 76, 209-214 (1953)
[8] Chisholm, R. C., Koblitsky, L. “Sorption of methyl bromide by soil in a fumigation chamber” J. Econ. Entomol. 36, 545-551 (1943)
[9] Yaron, B., Saltzman, S. “Influence of water and temperature on adsorption of parathion by soils” Soil Sci. Soc. Am. Proc. 36, 583-586 (1972)
[10] Kenaga, E. E., Goring, C. A. I. “Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota” In Aquatic Toxicology, J.C. Eaton, P. R. Parrish, and A.C. Hendricks, Eds., American Society for Testing and Materials, Philadelphia, 78-115. (1980)
[11] Means, J.C., Wood, S. G., Hassett, J. J., Banwart, W. L. “Sorption of polynuclear aromatic hydrocarbons by sediments and soils” Environ. Sci. Technol. 14, 1524-1528 (1980)
[12] Kile, D. E., Chiou, C. T., Zhou, H. Li, H., Xu, O. “Partition of nonpolar organic pollutants from water to soil and sediment organic matters,” Environ. Sci. Technol. 29, 1401-1406 (1995)
[13] Chiou, C. T., Peters, L. J. and Freed, V. H. “A physical concept of soil-water equilibria for nonionic organic compounds,” Science 206, 831-832 (1979)
[14] Karickhoff, S. W., Brown, D. S., Scott, T. A. “Sorption of hydrophobic pollutants on natural sediments” Water Res. 13, 241-248 (1979)
[15] Schwarzenbach, R. P., Westall, J. “Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies” Environ. Sci. Technol. 15, 1360-1367 (1981)
[16] Sun, S., Boyd, S. A. “Sorption of polychlorobiphenyl (PCB) congeners by residual PCB-oil phases in soils” J. Environ. Qual. 20, 557-561 (1991)
[17] Rutherford, D. W., Chiou, C. T., Kile, D. E. “Influence of soil organic matter composition on the partition of organic compounds” Environ. Sci. Technol. 26, 336-340 (1992)
[18] Mills, A. C., Biggar, J. W. “Solubility-temperature effects on the adsorption of gamma- and beta-BHC from aqueous and hexane solutions by soil materials” Soil Sci. Soc. Am. Proc. 33, 210-216 (1969)
[19] Spencer, W. F., Cliath, M. M. “Desorption of lindane from soil as related to vapor pressure” Soil Sci. Soc. Am. Proc. 34, 574-578 (1970)
[20] Pierce, R. H., Olney, C. E., Felbeck, G. T. Jr., “p,p’-DDT adsorption to suspended particulate matter in sea water” Geochim. Cosmochim. Acta 38, 1061-1073 (1974)
[21] Chiou, C. T., Porter, P. E., Schmedding, D. W. “Partition equilibria of nonionic organic compounds between soil organic matter and water” Environ. Sci. Technol. 17, 227-231 (1983)
[22] Chiou, C. T., Shoup, T. D., Porter, P. E. “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions” Org. Geochem. 8, 9-14 (1985)
[23] Chisholm, R. C., Koblitsky, L. “Sorption of methyl bromide by soil in a fumigation chamber” J. Econ. Entomol. 36, 545-551 (1943)
[24] Wade, P. I., “Soil fumigation. I. The sorption of ethylene dibromide by soils” J. Sci. Food Agric. 5, 184-192 (1954).
[25] Spencer, W. F., Cliath, M. M., Farmer, W. J. “Vapor density of soil-applied dieldrin as related to soil-water content, temperature, and dieldrin concentration” Soil Sci. Soc. Am. Proc. 33, 509-511 (1969)
[26] Chiou, C. T., Shoup, T. D. “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity” Environ. Sci. Technol. 19, 1196-1200 (1985)
[27] Pennell, K. D., Rao, P. S. C. “Comment on the surface area of soil organic matter” Environ. Sci. Technol. 26, 402-404 (1992)
[28] Thibaud, C., Erkey, C., Akgerman, A. “Investigation of the effect of moisture on the sorption and desorption of chlorobenzene and toluene from soil” Environ. Sci. Technol. 27, 2373-2380 (1993)
[29] Bower. C. A., Gschwend, F. B. “Ethylene glycol retention by soils as a measure of surface area and interlayer swelling” Soil Sci. Soc. Am. Proc. 16, 342-345 (1952).
[30] Bailey, G. W., White, J. L. “Review of adsorption and desorption of organic pesticides by soil colloids with implications concerning pesticide bioactivity” J. Agric. Food Chem. 12, 324-332 (1964)
[31] Weed, S. B., Weber, J. B. “Pesticide-organic matter interactions” In Pesticides in Soil and Water, Guenzi, W. D. Ed., Soil Science Society of America, Madison, WI, 223-256 (1974)
[32] Browman, M. G., Chesters, G. “The solid-water interface:Transfer of organic pollutants across the solid-water interface” In Fate of Pollutants in the Air and Water Environments, Part I, Suffet, I. H. Ed., Wiley, New York, 49-1051977
[33] Mingelgrin, U., Gerstl, Z. “Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soil” J. Environ. Qual. 12, 1-11 (1983)
[34] Chiou, C. T., Rutherford, D. W. Manes, M. “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data” Environ. Sci. Technol. 27, 1587-1594 (1993)
[35] Pennell, K. D., Boyd, S. A., Abriola, L. M. “Surface area of soil organic matter reexamined” Soil Sci. Soc. Am. J. 59, 1012-1018 (1995)
[36] Mane, M., “Activated carbon adsorption fundamentals” In Encyclopedia of Environmental Analysis and Remediation, Myers, R. A. Ed., Wiley, New York, 26-68 (1998)
[37] Ruthven, D. M., “Principles of Adsorption and Adsorption Process” John Wiley & Sons (1984)
[38] Thlbaud, C., Erkey, C., Akgerman, A. “Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography,” Environ. Sci. Technol. 26, 1159-1164 (1992)
[39] Campagnolo, J. F., Akgerman, A. “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents” J. Hazard. Mater. 49, 231-245 (1996)
[40] Dural, N. H., Chen, C. H., “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils” J. of Hazard. Mater. 53, 75-92 (1997)
[41] Ruiz, J., Bilbao, R., Murillo, M. B., “Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity” Environ. Sci. Technol. 32, 1079-1084 (1998)
[42] Brunauer, S., Emmett, P. H., Teller, E. “Adsorption of gases in multimolecular layers” J. Am. Chem. Soc. 60, 309-319 (1938)
[43] Adamson, A. W., “Physical Chemistry of Surfaces” 2nd Ed., Wiley, New York (1967)
[44] Gregg. S. J., Sing, K. S. W. “Adsorption, Surface Area, and Porosity” 2nd Ed., Academic Press, London (1982)
[45] Weissmahr, K. W., Haderlein, S. B., Schwarzenbach, R. P., “In situ spectroscopic investigations of adsorption mechanism of nitro aromatic compounds at clay minerals” Environ. Sci. Technol. 31, 240-247 (1997)
[46] Doner, H. E., Mortland, M. M. “Benzene complexes with Cu (II) montmorillonite” Science 166, 1406-1407 (1969)
[47] Mader, B. T., Goss, K. U., Eisenreich, S. J. “Sorption of nonionic hydrophobic organic chemicals to mineral surface” Environ. Sci. Technol. 31, 1079-1086 (1997)
[48] Weidenhaupt, A., Arnold, C., Muller, S. R., Haderlein, S. B., Schwarzenbach, R. P. “Sorption of organic biocides to mineral surface” Environ. Sci. Technol. 31, 2603-2609 (1997)
[49] 王一雄、陳尊賢、李達源,“土壤污染學”,國立空中大學,台北,民國八十六年。 【ISBN: 957-661-091-5】
[50] Cseri, T., Békássy, S., Figueras, F., Rizner, S. “Benzylation of aromatics on ion-exchanged clays” J. Mol. Catal. A-Chem. 98, 101-107 (1995)
[51] Maes, N., Heylen, I., Cool, P., Vansant, E. F. “The relation between the synthesis of pillared clays and their resulting porosity” Appl. Clay Sci. 12, 43-60 (1997)
[52] Goss, K. U. “Effects of temperature and relation humidity on the sorption of organic vapors on clay minerals” Environ. Sci. Technol. 27, 2127-2132 (1993)
[53] Goss, K. U., Eisenreich, S. J. “Adsorption of VOCs from the gas phase to different minerals and a mineral mixture” Environ. Sci. Technol. 30, 2135-2142 (1996)
[54] Lee, J.-F., Lee, C.-K., and Juang, L.-C. “Size effects of exchange cation on the pore structure and surface fractality of montmorillonite” J. Colloid Interf. Sci., 217, 172-176 (1999)
[55] Goss, K. U. “Effects of temperature and relation humidity on the sorption of organic vapors on quartz sand” Environ. Sci. Technol. 26, 2287-2294 (1992)
[56] Goss, K. U., Eisenreich, S. J. “Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relation humidity” Environ. Sci. Technol. 31, 2827-2832 (1997)
[57] Steinberg, S. M., Schmeltzer, J. S., Kreamer, D. K. “Sorption of benzene and trichloroethylene on a desert soil: Effects of moisture and organic matter” Chemosphere 33, 961-980 (1996)
[58] Batterman, S., Kulshrestha, A., Chang, H. “Hydrocarbon vapor transport in low moisture soils” Environ. Sci. Technol. 29, 171-180 (1995)
[59] Ong, S. K., Lion, L. W. “Effects of soil properties and moisture on the sorption of trichloroethylene vapor” Water Res. 26, 287-2294 (1992)
[60] Jury, W. A., Spencer, W. F., Farmer, W. J. “Behavior assessment model for trace organic in soil, 1. Model description” J. Environ. Qual. 12, 558-564 (1983)
[61] Chiou, C. T., Porter, P. E., Schmedding, D. D. W. “Partition equilibrium of nonionic organic compounds between soil organic matter and water” Environ. Sci. Technol. 17, 227-231 (1983)
[62] Chiou, C. T., Shoup, T. D., Porter, P. E. “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solution” Org. Geochem. 8, 9-14 (1985)
[63] Chiou, C. T., Kile, D. E., Malcolm, R. L. “Sorption of vapors of some organic liquids on soil humic acid and its relation to partition of organic compounds in soil organic matter” Environ. Sci. Technol. 22, 298-303 (1988)
[64] Ong, S. K., Lion, L. W. “Mechanisms for trichloroethylene vapor sorption onto soil minerals” J. Environ. Qual. 20, 180-188 (1991)
[65] Ong, S. K., Lion, L. W. “Trichloroethylene vapor sorption onto soil minerals” Soil Sci. Soc. Am. J. 55, 1559-1568 (1991)
[66] Schnitzer, M., Kodama, H. “Interactions between organic and inorganic components in particle-size fractions separated from four soils” Soil. Sci. Soc. Am. J. 56, 1099-1105 (1992)
[67] Tate III, R. L., “Soil organic matter,” John Wiley & Sons, Inc., New York, 1987.
[68] Rutherford, D. W., Chiou, C. T. “Effect of water saturation in soil organic matter on the partition of organic compounds” Environ. Sci. Technol., 26, 965-970 (1992)
[69] Grathwohl, P. “Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations” Environ. Sci. Technol. 24, 1687-1693 (1990)
[70] Weber, W. Jr., Mcginley, P. M., Katz, L. E. “A distributed reactivity model for sorption by soils and sediments” Environ. Sci. Technol. 26, 1955-1962 (1992)
[71] Dural, N. H., Chen, C. H. “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils” J. of Hazard. Mater. 53, 75-92 (1997)
[72] Leistra, M. “Destribution of 1,3-dichloropropene over the phases in soil” L. Agric. Food Chem. 18, 1124-1126 (1970)
[73] Lambert, S.M. “Functional Relationship Between Sorption in Soil and Chemical Structure” J. Agric. Food Chem. 15, 572-576, (1989)
[74] Thomas, M.Y.; Weber, W. J. Jr. “A Distributed Reactivity Model for Sorption by Soils and Sediments. 3. Effects of Diagenetic Processes on Sorption Energetics” Environ. Sci. Technol. 29, 92-97 (1995)
[75] Xing, B., Pignatello, J. J., Gigliotti, B. “Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents” Environ. Sci. Technol. 30, 2432-2440 (1996)
[76] Spurlock, F. C., Bigger, J. W. “Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution” Environ. Sci. Technol., 28, 996-1002 (1994)
[77] Chiou, C.T., Kile, D.E. “Deviations from Sorption Linearity of Polar and Nonpolar Organic Compounds on Soils at Low Relative Concentrations” Environ. Sci. Technol. 32, 338-343 (1998)
[78] Leboeuf, E. J., Weber, W. J., Jr. “A Distributed Reactivity Model for Sorption by Soils and Sediments. 8. Sorbet Organic Domains: Discovery of a Humic Acid Glass Transition and an Argument fur a Polymer-Based Model” Environ. Sci. Technol., 31, 1697-1702 (1997)
[79] Huang, W.; Young, T. M.; Schlautman, M. A.; Weber, W. J. Jr. “A Distributed Reactivity Model for Sorption by Soils and Sediments. 9. General Isotherm Nonlinearity and Applicability of the Dual Reactive Domain Model” Environ. Sci. Technol., 31, 1703-1710 (1997)
[80] Pignatello, J. J.; Xing, B. “Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles” Environ. Sci. Technol. 30, 1-11 (1996)
[81] Xing, B.; Pignatello, J. J. “Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly (Vinyl Chloride) and Soil Organic Matter” Environ. Sci. Technol. 31, 792-799 (1997)
[82] Chiou, C. T.; Kile. D. E.; Rutherford, D. W. “Sorption of Selected Organic Compounds from Water to a Peat Soil and Its Humic-Acid and Humin Fractions Potential Sources of the Sorption Nonlinearity” Environ. Sci. Technol. 34, 1254-1258 (2000)
[83] Manes, M, Hofer, L. J. E. “Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon” J. Phys. Chem. 73, 584-590 (1969)
[84] Chiou, C. T., Manes, M. “Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. V. Adsorption from water of some solids and their melts, and a comparison of bulk and adsorbate melting points” J. Phys. Chem. 78, 622-626 (1974)
[85] Griffin, J. J., Goldberg, E. D. “Impact of fossil fuel combustion on sediments of Lake Michigan: A reprise” Environ. Sci. Technol. 17, 244-245 (1983)
[86] Smith, D. W., Griffin, J. J., Goldberg, E. D. “Elemental carbon in marine sediments: a baseline for burning” Nature (London) 241, 268-270 (1973)
[87] Masiello, C.A., Druffel, E. R. M. “Black carbon in deep-sea sediments” Science 280, 1911-1913 (1998)
[88] Senesi, N., Testini, C. Pestic. Sci., 14, 79, (1983)
[89] Kleineidam, S., Rügner, H., Ligouis, B., Grathwohl, P. “Organic matter facies and equilibrium sorption of phenanthrene” Environ. Sci. Technol. 33, 1637-1644 (1999)
[90] Karapanagioti, H. K., Kleineidam, S., Sabatini, D. A., Grathwohl, P., Ligouis, B. “Impacts of heterogeneous organic matter on phenanthrene sorption: Equilibrium and kinetic studies with aquifer material” Environ. Sci. Technol. 34, 406-414 (2000)
[91] Karapanagioti, H. K., Childs, J., Sabatini, D. A. “Impacts of heterogeneous organic matter on phenanthrene sorption: Different soil and sediment samples” Environ. Sci. Technol. 35, 4684-4690 (2001)
[92] Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J., Gschwend, P. M. “Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability” Environ.Sci. Technol. 31, 203-209 (1997)
[93] Accardi-Dey, A., Gschwend, P. M. “Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments” Environ. Sci. Technol. 36 , 21-29 (2002)
[94] Ran, Y., Xiao, B., Huang, W., Peng, P., Liu, D., Fu, J., Sheng, G. “Kerogen in aquifer material and its strong sorption for nonionic organic pollutants” J. Environ. Qual., 32, 1701-1709 (2003)
[95] Song, J. Peng, P. Huang, W. “Black carbon and kerogen in soils and sediments. 1. Quantification and characterization” Environ. Sci. Technol. 36, 3960-3967 (2002)
[96] Ghosh, U., Zimmerman, J. R., Luthy, D. G. “PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability” Environ. Sci. Technol, 37, 2209-2217 (2003)
[97] Yang, Y., Shdng G. “Enhanced Pesticide Sorption by Soils Containing Particulate Matter from Crop Residue Burns” Environ. Sci. Technol. 37, 3635-3639 (2003)
[98] Chun, Y., Sheng, G., Chiou, C.T. “Evaluation of Current Techniques for Isolation of Chars as Natural Adsorbents” Environ. Sci. Technol. 38, 4227-4232 (2004)
[99] Chiou, C. T. “Comment on thermodynamics of organic chemical partition in soils” Environ. Sci. Technol. 29, 1421-1422 (1995)
[100] Chiou, C. T., McGroddy, S. E., Kile, D. E. “Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments” Environ. Sci. Technol. 32, 264-269 (1998)
[101] Baldock, J. A., Oades, J. M. Waters, A. G., Peng, X., Vassallo, A. M., Wilson, M. A. “Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy” Biogeochemistry 16, 1-42 (1992)
[102] Chin, Y.-P., Aiken, G. R., Danielsen, K. M. “Binding of Pyrene to Aquatic and Commercial Humic Substances: The Role of Molecular Weight and Aromaticity” Environ. Sci. Technol. 31, 1630-1635, (1997)
[103] Gauthier, T. D., Seitz, W. R., Grant, C. L. “Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values” Environ. Sci. Technol. 21, 243 (1987)
[104] Acree, W. E., Jr., “Department of Chemistry, University of North Texas” Denton, Texas, personal communication (1998)
[105] Hilbebrand, J. H., Praunitz, J. M., Scott, R. L. “Regular and Related Solutions” Van Nostrand Reinhold Co., New York (1970)
[106] Chiou, C. T., Kile, D. E. “Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter” Environ. Sci. Technol. 28, 1139-1144 (1994)
[107] Cornelissen, G. Gustafsson, Ö. “Sorption of Phenanthrene to Environmental Black Carbon in Sediment with and without Organic Matter and Native Sorbates” Environ. Sci. Technol. 38 (2004) 148-155
[108] Karapanagioti, H. K., Sabatini, D. A. “Impacts of Heterogeneous Organic Matter on Phenanthrene Sorption: Different Aquifer Depths” Environ. Sci. Technol. 34, 2453-2460, (2000)
[109] Xiao, B. Yu, Z., Huang, W., Song, J., Peng, P. “Black Carbon and Kerogen in Soils and Sediments. 2. Their Roles in Equilibrium Sorption of Less-Polar Organic Pollutants” Environ. Sci. Technol. 38, 5842-5852 (2004)
[110] Tsay, C.-S. Lee, C.-K. Chiang, A. S. T. “The Fractal and Percolation Analysis of a Polymeric Al2O3 gel” Chem. Phys. Lett. 278, 83–90 (1997)
[111] Coughlin, R. W., Ezra, F. S. “Role of surface acidity in the adsorption of organic pollutants on the surface of carbon” Environ. Sci. Technol. 2, 291-297 (1968)
[112] Lee, J.-F., Liao, P.-M. Kuo, C.-C. Yang, H.-T. Chiou, C. T. “Influence of a Nonionic Surfactant (Triton X-100) on Contaminant Distribution between Water and Several Soil Solids” J. Colloid Interf. Sci. 229, 445-452 (2000)
[113] Nayyar, S. P., Sabatini, D. A., Harwell, J. H. “Surfactant Adsolubilization and Modified Admicellar Sorption of Nonpolar, Polar, and Ionizable Organic Contaminants” Environ. Sci. Technol. 28, 1874-1881 (1994)
[114] Zhu, L., Chen, B., Shu, T., Chiou, C.T. “Interactions of Organic Contaminants with Mineral-Adsorbed Surfactants” Environ. Sci. Technol. 37, 4001-4006 (2003)
[115] Xu, Q., Snell, E. D. “Adsorption Behavior of Alkylarylethoxylated Alcohols on Silica” J. Colloid Interf. Sci. 144, 165-173 (1991)
[116] 葉佩雯,「分子間作用力影響土壤中非離子有機物傳輸行為之研究」,碩士論文,中央大學環境工程研究所,2002
[117] 趙承琛,“界面科學基礎”,復文出版社,台南市,1987
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明