博碩士論文 90426007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:44.197.197.23
姓名 廖淑君(Shu-Jiun Liao)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 運用動態分群方法在市場區隔上 -以電信產業為例
(Using dynamic clustering method at marketing segmentation-in Telecom industry )
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 受到全球電信事業自由化及國內電信市場在1997年全面開放行動電話通信業務的衝激,市場競爭的型態受到大幅改變。在多家業者加入競爭及消費者對無線通信服務需求熱切下,使得電信產業呈現一片蓬勃景象。然而,隨著行動電話市場的飽和,各家業者均面臨客戶嚴重流失問題。
為了能維持市場佔有率,各業者無不卯足全力,提供各種促銷方案來吸引客戶,然而前提就是要先做好市場區隔,以往在消費者分群的研究上,大多是將有相似消費行為的顧客來作為分群的根據,但顧客的消費行為,常會因為不同時期而有所變動,所以在消費者分群上,也必須常常跟著變動,而以往的作法是每當有消費者的行為改變,就必須將全部的消費者重新分群,不論變動的人數是多是少,因而常會耗費龐大的成本,因此本研究提出一個新的演算法single-link incremental algorithm,能夠視實際變動情況來調整群內變動的資料點,而不用將全部的資料點重新分群,不但能節省龐大的成本,又能藉由正確的分群資訊了解每一群消費者的真正需求,提高顧客對促銷方案的接受度。
摘要(英) Since 1997, the mobile telecom industry in Taiwan has expanded rapidly to a liberalized environment; the mobile telecom market has drastic competition. Nowadays as the mobile telecom market is being saturated, those carrier companies are confronted with high customer churn rate. 
For reducing the customer churn rate, every telecom company try to provide many promotional plans. But it is difficult to choose suitable plan for customers who change their purchasing behavior quickly. Sometimes, only few customers changed, but we have to re-cluster the whole customer data. It is costly and inefficient. In this paper, we introduce a new cluster algorithm, called single-link incremental algorithm. It only to adjust data objects for real change situation in intra-cluster which not to re-cluster again for all data objects. Using this new method, single-link incremental algorithm, not only can reduce cost, but also gain the right market segmentation information immediately.
關鍵字(中) ★ 資料採礦
★ 集群分析
★ 電信產業
關鍵字(英) ★ Single link algorithm
論文目次 Contents
摘要 I
English abstract II
Contents III
List of Figures V
List of Tables V
Chapter I Introduction 1
1.1 Background 1
1.2 Motivation 1
1.3 Objective 2
1.4 Research Process 2
1.5 Thesis Organization 3
Chapter II Literature Review 4
2.1 Hierarchical Methods 5
2.1.1 Agglomerative hierarchical clustering 5
2.1.2 Divisive hierarchical clustering 7
2.2 Partitioning Methods 7
2.2.1 Squared Error 7
2.2.2 Graph-Theoretic 8
2.3 Model-based Methods 8
2.3.1 Statistical approach 8
2.3.2 Neural network approach 9
2.4 Density-based Methods 10
2.5 Grid-based Methods 11
2.6 Summary 12
Chapter III Methodology 13
3.1 Overview 13
3.2 Single-link algorithm 13
3.3 Single-link incremental algorithm 16
3.3.1 Introduce single-link incremental algorithm 16
3.3.2 Moving situations 20
3.3.3 The flowchart is as follows 22
3.3.4 Examples 23
Chapter Ⅳ Experiment 28
4.1 Environment 28
4.2 Experiment 29
4.2.1 Variation volume analysis 29
4.2.2 Performance evaluation 31
Chapter Ⅴ Conclusions & Suggestions 34
5.1 Conclusion 34
5.2 Suggestion 34
Reference 35
Appendix 38
List of Figures
Figure 1.1 Research Flowchart 2
Figure 2.1 A taxonomy of clustering approaches 4
Figure 3.1 Illustration of SLI algorithm 16
Figure 3.2 The flow chart of SLI algorithm 22
Figure 4.1 Raw data distribution 29
Figure 4.2 Testing data distribution 30
Figure 4.3 The volume of moving objects 31
Figure 4.4 Evaluation of two algorithms in October 31
Figure 4.5 Evaluation of two algorithms in November 32
Figure 4.6 Evaluation of two algorithms in December 32
Figure 4.7 Evaluation of two algorithms in January 32
List of Tables
Table 3.1 Situations of moving objects 20
參考文獻 Reference
[1] A.K. Jain , M.N. Murty and P.J. Flynn “Data Clustering:A Review”, ACM Computing
[2] Ankerst M., Breunign M., Kriegel H.p. and Sander J., “OPTICS: Ordering points to identify the clustering structure,” In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pp.49-60, Philadelphia, PA, June 1999
[3] A. Hinneburg and D. A. Keim, "An Efficient Approach to Clustering in Large Multimedia Databases with Noise", KDD'98, New York, Aug. 1998.
[4] Ester M., Kriegel H.P., Sander J. and Xu x., “Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, “In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD’94), pp.226-231, Portland, OR, Aug.1996
[5] Fisher, D.H.” Knowledge acquisition via incremental conceptual clustering,” Machine Learning, 2, pp.139-172,1987
[6] Guha S., Rastogi R. and Shim K., “CURE: An efficient clustering algorithm for large databases,” In Proc. 1998 ACM-SIGMOD Int. Conf. Management of DATA (SIGMOD’98), pp.73-84, Seattle, WA, June 1998
[7] Guha S., Rastogi R. and Shim K., “ROCK: A Robust Clustering Algorithm For Categorical Attribute,” In Proc. 1999 Int. Conf. data Engineering (ICDE’99) pp.512-521, Sydney, Australia, Mar.1999
[8] Gotileb, g. C. and Kumar, S. “Semantic clustering of index terms“, J. ACM 15, pp.493-513, 1968
[9] Han J. and Kamber M., “Data Mining: Concepts and techniques”, Morgan Kaufmann, 2000.
[10] J. H.Gennari, P. Langley, and D. Fisher” Models of Incremental Concept Formation”, Artificial Intelligence, 40,11-61, 1989
[11] Karypis G., Han E.H. and Kumar V., “CHAMELEON: Hierarchical Clustering Using Dynamic Modeling,” IEEE Computer, Vol. 32, No. 8, pp.68-75, (1999)
[12] Kaufman, L. and Rousseeuw, P.J. (1986), Clustering Large Data Sets, in Pattern Elsevier/North-Holland, 425-437
[13] Kaufman L. and Rousseeuw PJ, “Finding Groups in Data: An Introduction to Cluster Analysis,” John wiley &Sons, 1990.
[14] MacQueen J., “Some Methods for Classification and Analysis of Multivariate Observations,” Berkeley Symp. Math. Stat. and Prob., Vol. 1, pp.281-297, 1967
[15] Ng R. and Han J., “Efficient and Effective Clustering Method for Spatial Data Mining,” In Proc. 1994 Int. conf. Very Large Databases (VLDB’94), pp.144-155, Santiago, chile, Sept. 1994
[16] Ozawa, K. “A Stratificational overlapping cluster scheme”, Pattern Recogn. 18, pp.279-286, 1985
[17] Rose, K., gurewitz, E., and Fox, G. C. “Deterministic annealing approach to constrained clustering”, IEEE Trans. Pattern Anal. Intell.15, pp.785-794, March.1993
[18] R. Carraghan and P.M. Pardalos. An exact algorithm for the maximum clique problem. Operations Research Letters 9,pp.375-382, 1990.
[19] Sheikholeslami G., Chatterjee S., and Zhang A., “WaveCluster: A multi-resolution clustering approach for very large spatial databases,” In Proc. 1998 Int. Conf. Very Large Databases (VLD’98), pp.428-439, New York, Aug.1998
[20] Stutz and P. Cheeseman, “Bayesian Approach to Classification,” In Maximum Entropy and Bayesian Methods, Cambridge, 1994, eds. J. Skilling and S. Sibisi. Dordrecht, The Netherlands: Kluwer Academic Publishers. 315
[21] Wang W., Yang and Muntz R., “A Statistical Information grid Approach to Spatial Data Mining, “In Proc. 1997 Int. Conf. Very Large Data Bases(VLDB’97), pp.186-195, Athens, Greece, Aug.1997
[22] Zhang T., Ramakrishnan R. and Livny M., “BIRCH: An Efficient Data Clustering Method for very Large Databases,” In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data(SIGMOD’96),pp.103-114,1996
[23] Zahn, C. T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Compute. C-20, pp.68-86, Apr.1971
[24] http://www.dcs.gla.ac.uk/~iain/keith/data/concepts/34.htm
[25] http://www.clustan.com/hierarchical_cluster_analysis.html
[26]http://met.psu.edu/~arnottj/newclusterpage/Cluster_Analysis_Description.html
指導教授 何應欽、許秉瑜
(Ying-Chin Ho、Ping-yu Hsu)
審核日期 2003-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明