博碩士論文 90443001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.95.23.35
姓名 侯佳利(Jia-Li Hou)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 以遺傳程式規劃建構靜態及動態非線性投資策略
(Constructing Static and Dynamic Investment Strategy Portfolios by Genetic Programming)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題
★ 關聯式資料庫之廣義知識探勘★ 考量屬性值取得延遲的決策樹建構
★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題★ 利用分割式分群演算法找共識群解群體決策問題
★ 以新奇的方法有序共識群應用於群體決策問題★ 利用社群網路中的互動資訊進行社群探勘
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究係提出一投資組合問題之研究架構,將投資問題以資金分配頻率及分配方式兩個維度區分為四個象限,在資金分配方式上區分為線性及非線性方式,在資金分配頻率方面,則區分為靜態與動態配置。其中若將所有投資標的投資期間視為相同,統一批次於期初完成資金分配則屬靜態資金分配,若將各投資標的期間視為各異,於需要資金時使配置資金即屬動態資金配置。
傳統財務領域所探討之投資組合問題多係屬於線性靜態投資問題,係將所有的投資標的投資期間視為相同,於期初以買入持有方式進行投資,因此係將資金以線性方式靜態直接分配在多個投資標的物上,以求得最大化報酬或最小化風險[Huang, 2008; Li, 2008]。於期末再重新決定下一期之資金配置。
本研究並提出以『投資策略』為投資標的,本研究係將投資標的物與交易規則進行配對成為投資策略,再將資金分配在投資策略上,而非直接分配在投資標的上。並提出一非線性資金分配方式,透過柔性運算技術以遺傳程式規劃產生資金分配樹,決定每一投資策略所分配之資金比重,並分別提供靜態與動態資金配置頻率之解決方案。
本研究透過於美國股市以道瓊工業指標之三十個成份股配合教科書、學術研究及投資市場常用的九項技術指標所構成之八十一個簡單交易規則,成為二千四百三十個投資策略,透過遺傳程式規劃進行資金配置,並以1991至2006年之股票日交易資料進行實驗測試,實驗結果顯示在測試期中靜態、動態非線性投資組合策略相較於買入持有策略,不但可以獲得相當之投資報酬,而且可以有較低之投資風險。
摘要(英) The study comes up with a framework of portfolio, dividing investment issues into four quadrants based on two dimensions: capital allocation frequency and allocation approach. In allocation approach, there are linear and non-linear. In capital allocation frequency selection approach, there are static and dynamic allocation approaches. In the framework, static allocation, based on the assumption that if investment duration is identical, is to complete capital allocation selection at the beginning of duration; dynamic allocation, based on the assumption that each investment period is different, is to allocate capital when needed.
In traditional financial area, investment portfolios are linear and static investment issue, which is take all investment duration are the same, and to buy in at the beginning of period, therefore, invest decision is to directly allocate capital on multiple investment objectives by static allocation, in order to gain the greatest profit or minimize the risk probability.[Huang, 2008; Li, 2008] And reconsidering investment decision for next duration at the end of duration.
The framework of the research takes “investment strategy” as investment objectives. The research is to make pairs of investment objectives and transaction rules, and allocate capital on investment strategies rather on investment objectives directly. And the research comes up a solution of non-linear capital allocation approach, including planning a capital allocation tree by soft computing and genetic algorithms, calculating every capital weight on every investment strategies, and providing static and dynamic capital frequency strategies.
The research takes 30 stocks in Dow Jones Industrial Average of U.S. stock market、textbook、academic researches and 9 technical indexes which are commonly used in investment markets to comprise 81 simple transaction rules and constitute 2,430 investment strategies which are planned by genetic algorithms. And experiment test of research is based on 1999 to 2006 stock market data, the outcome of experiment shows that static and dynamic and non-linear portfolios gains greater profit and smaller probability of risk, comparing to buy-in strategy.
關鍵字(中) ★ 非線性資金分配
★ 線性資金分配
★ 資金配置
★ 投資策略
★ 投資組合
★ 人工智慧
★ 遺傳程式規劃
關鍵字(英) ★ Genetic Programming
★ Portfolio
★ Artificial Intelligence
★ Capital Allocation
★ Investment Strategy
★ Linear Capital Allocation
★ Non-Linear Capital Allocation
論文目次 第一章、 緒論............1
第一節、 研究背景............1
第二節、 研究動機............2
第三節、 研究目的............2
第四節、 預期研究貢獻............2
一、 提出一投資組合策略架構............3
二、 提出投資策略的概念............3
三、 提出SGPIS與DGPIS............3
四、 提出動態資金配置方式............3
第五節、 論文章節說明............3
第二章、 文獻探討............5
第一節、 財務領域之投資理論............5
一、 投資組合理論............5
二、 效率前沿 (Efficient frontier)............6
三、 雙基金定理與單基金定理............9
四、 Sharpe指標............10
第二節、 交易規則之研究............12
一、 效率市場假說............12
二、 技術指標............15
第三節、 以未來股票價值之選股分析............19
一、 財務指標分析............19
二、 企業價值分析............20
三、 股價評價模型............20
第四節、 財務方法在投資組合之研究............21
一、 在資產配置之最適策略之應用............21
二、 在投資組合資產配置策略之研究............22
三、 在投資組合風險評價方面的研究............22
四、 Sharpe 指標之VaR 形式應用............23
第五節、 人工智慧在投資研究的分類整理............24
一、 交易策略(Trading Strategy):............24
二、 選股策略(Selection Strategy):............26
三、 資金策略(Capital Strategy):............27
第三章、 遺傳程式規劃............28
第一節、 遺傳演算法............28
一、 遺傳演算法的運算程序............29
二、 交配的方式............31
三、 控制參數(Control parameter)............32
第二節、 遺傳程式規劃............34
第三節、 遺傳程式規劃的演化運算............36
第四章、 研究架構............41
第一節、 研究流程............41
第二節、 投資策略............42
第三節、 投資組合問題研究架構............46
一、 投資組合問題四象限............46
二、 線性靜態投資組合問題............46
三、 線性動態投資組合問題............47
四、 非線性靜態投資組合問題............47
五、 非線性動態投資組合問題............48
第五章、 實驗測試............49
第一節、 實驗工具與資料來源............49
一、 系統軟硬體設備............49
二、 資料來源............49
第二節、 實驗參數之決定............51
一、 實驗投資標的之選擇............51
二、 資料前處理............51
三、 實驗環境參數............60
第三節、 實驗一 技術指標與時間的關係............61
一、 實驗說明............61
二、 實驗數據說明............61
三、 實驗結論............72
第四節、 實驗二 SGPIS靜態遺傳程式規劃投資策略............73
一、 實驗說明............73
二、 實驗數據說明............77
三、 實驗結論............82
第五節、 實驗三 同時考慮報酬與風險............83
一、 實驗說明............83
二、 實驗數據說明............87
三、 實驗結論............91
第六節、 實驗結果綜合分析............93
第六章、 結論與討論............94
第一節、 研究發現............94
一、 投資策略在歷史資料的回測............94
二、 多頭市場買入持有策略的有效效............94
第二節、 研究貢獻............94
一、 提出一投資組合策略架構............94
二、 提出投資策略的概念............95
三、 提出SGPIS與DGPIS............95
四、 提出動態資金配置方式............95
第三節、 研究限制............96
一、 實驗範圍的限制............96
二、 研究時間的限制............96
三、 資金分配的限制............96
第四節、 未來研究方向............97
一、 加入多期的訓練方式............97
二、 考慮複雜的交易規則............97
三、 加入停損、停利規則,進一步降低風險............97
四、 考慮同時進行多、空操作............97
五、 考慮於動態配置資金時加入Fuzzy區間控制............97
參考文獻............98
參考文獻 [李安邦,民86] 李安邦,「以遺傳演算法為基底的模糊專家系統於投資策略之應用」,元智大學管研所碩士論文,民八十六年。
[李卿企,民86] 李卿企,「以基因演算法探討國際投資組合策略之研究」, 國立政治大學國際貿易學系研究所碩士論文,民國八十六年。
[黃德順,民87] 黃德順,企業財務分析-企業價值的創造及評估,初版,華泰文化事業公司,民國八十七年。
[杜金龍,民87] 杜金龍,技術指標在台灣股市應用的訣竅,金錢文化,民國八十七年。
[鄧紹勳,民88] 鄧紹勳,「遺傳演算法於股市擇時策略之研究」,中央大學資訊管理研究所碩士論文,民國八十八年。
[吳秉奇,民88] 吳秉奇,「類神經網路在台灣證券交易所股價指數期貨的預測應用統」,國立中央大學資訊管理研究所碩士論文,民國八十八年。
[曾思博,民88] 曾思博,「類神經網路於股價預測與資金之配置應用」,中央大學資訊管理研究所碩士論文,民國八十八年。
[江義玄,民89] 江義玄,「投資組合之風險評價:新模擬方法的應用」,國立政治大學企業管理學系碩士論文,民國八十九年。
[張桂莉,民89] 張桂莉,「資產配置之最適策略」,國立政治大學企業管理學系研究所碩士論文,民國八十九年。
[楊孟龍,民89] 楊孟龍,「類神經網路於股價波段預測及選股之應用」,中央大學資訊管理研究所碩士論文,民國八十九年。
[張振魁,民89] 張振魁,「以類神經網路提高股票單日交易策略之獲利」,中央大學資訊管理學系研究所碩士論文,民國八十九年。
[林萍珍,民89] 林萍珍、陳稼興、林文修,「遺傳演算法在使用者為導向的投資組合選擇之應用」, 資訊管理學報,第七卷,第一期,2000年7月,155-171。
[賴俊宇,民89] 賴俊宇,上櫃電子業經營績效分析-資料包絡分析法之應用,銘傳大學管理科學研究所碩士論文,民國八十九年。
[游耀宗,民90] 游耀宗,「投資組合資產配置策略之研究-左偏動差模型之應用」,銘傳大學金融研究所碩士論文,民國九十年。
[宋孝聖,民90] 宋孝聖,「台灣上市股票投資組合選取與績效評估 ─ Sharpe 指標之VaR 形式應用」,銘傳大學金融研究所碩士論文,民國九十年。
[方國榮,民90] 方國榮,證券投資最適決策指標之研究,台灣大學商學研究所碩士論文,民國九十年。
[陳正榮,民90] 陳正榮,以濾嘴法則檢驗台灣股票市場弱式效率性之研究,高雄第一科技大學財務管理研究所碩士論文,民國九十年。
[林耀堂,民90] 林耀堂,遺傳程式規劃於股市擇時交易策略之研究,中央大學資訊管理學系碩士論文,民國九十年。
[謝劍平,民90] 謝劍平,現代投資學─分析與管理,智勝文化,民國九十年。
[陳共,民90] 陳共、周升業、吳曉求,證券投資分析,五南圖書出版公司,民國九十年。
[藍心梅,民90] 藍心梅,會計基礎評量模式在台灣股市適用性之研究,中原大學會計研究所碩士論文,民國九十年。
[趙永昱,民91] 趙永昱,技術分析交易法則在股市擇時之實證研究,中山大學財務管理研究所碩士論文,民國九十一年。
[陳伯仁,民91] 陳伯仁,證券交易策略發掘,中央大學資訊管理研究所碩士論文,民國九十一年。
[郭素菱,民91] 郭素菱,機構投資人與財務報表攸關性之研究,成功大學會計研究所博士論文,民國九十一年。
[陳冠宏,民92] 陳冠宏,我國上市及上櫃電子公司股票評價之研究-以盈餘及財務比率分析,國立東華大學公共行政研究所碩士論文,民國九十二年。
計研究所碩士論文,民國九十年。
[李良俊,民92] 李良俊,台灣股票市場技術分析有效性之研究,實踐大學企業管理研究所碩士論文,民國九十二年。
[吳詩敏,民94] 吳詩敏,組合編碼遺傳演算法於投資策略資金分配之應用,中央大學資訊管理研究所碩士論文,民國九十四年。
[Allen, 1999] Allen, F. and Karjalainen R. ,“Using genetic algorithms to and technical trading rules,” Journal of Finanical Economics, Vol. 51, 1999, pp. 245-171.
[Andrews, 1986] Andrews, C., Ford, D. and Mallison, K., “The Design of Index Fund and Alternative Methods of Replication,” The Investment Analyst, Vol. 82, 1986, pp. 13-16.
[Baruch, 1976]Lev, Baruch, “Efficient Capital Markets and Accounting: A Critical Analysis (Book Review),” Journal of Finance, 1976, Vol. 31, No. 5, pp. 1537-1538.
[Bauer, 1994] Bauer Jr. and R.J., Genetic Algorithms and Investment Strategies, John Wiley & Sons, 1994, pp. 103-213.
[Bauer, 1999] R.J. Bauer, and J.R. Dahlquist, Technical Market Indicators, John Wiley & Sons, 1999.
[Booker, 1987] Booker, L., “Improving Search in Genetic algorithms,” in Davis, L. (Editor), Genetic Algorithms and Simulated Annealing, 1987.
[Bohan, 1981] Bohan, J., “Relative Strength: Further Positive Evidence,” The Journal of Portfolio Management, 1981, pp36-39.
[Brealey, 2000] Brealey, Richard A. and Stewart C. Myers. Principles Of Corporate Finance, sixth Edition. McGraw-Hill Higher Companies,2000.
[Brock, 1952] Brock, W., Josef, L. and Blake, L., “Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,” Journal of Finance, Vol. 47, 1992, pp.1731-1764.
[Chen, 2006] J.S. Chen and J.L. Hou. “A Combination Genetic Algorithm with Applications on Capital Allocation,” Lecture Notes in Computer Science (IEA/AIE 2006), August 2006.
[Chi, 1999] Sheng-Chi Chi, Hung-Pin Chen, Chun-Hao Cheng, “A forecasting approach for stock index future using grey theory and neural networks,” Neural Networks, 1999.
[Colby, 2002] Colby, R. W., The Encyclopedia of Technical Market Indicators, 2nd Edition, 2002, McGraw-Hill
[Cook, 1971] Cook, S., “The Complexity of Theorem-Proving Procedures,” Proc ACM Symp Theory of Computing, 1971, pp. 151-158.
[Cooper, 1974] Cooper, Richard V. L., “Efficient Capital Markets and the Quantity Theory of Money,” Journal of Finance, Jun74, Vol. 29 Issue 3, p887-908.
[Davis, 1989] Davis, L., “Adapting Operator Probabilities in Genetic Algorithms,” In Proceeding of the 3rd International Conf. on Genetic algorithms, 1989, pp. 61-70.
[Davis, 1985] Davis, L., “Job Shop Scheduling with Genetic Algorithms,” In Proceeding of an International Conference on Genetic Algorithms and Their Application, 1985, pp. 136-140.
[Darwin, 1859] Darwin , Charles. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. University of Virginia Library, 1859.
[Dess, 1989] Dess,G. C. and R. B. Robinson, “Measuring Organizational performance in the absence of objective measures,” Strategic Management Journal, 1989, pp.667-695.
[Fama, 1970] Eugene.F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical Work,” Journal of Finance, Vol. 25, 1970, pp.383-417.
[Fama, 1991] Fama, Eugene F., “Efficient Capital Markets: II,” Journal of Finance, Dec. 1991, Vol. 46 Issue 5, pp.1575-1617.
[Feltham, 1995] Feltham, G. A., and J. A. Ohlson, “Valuation and clean surplus accounting for operating and financial activities,” Contemporary Accounting Research, 1995, Vol. 11, pp. 689-731.
[Feltham, 1996] Feltham, G. A., and J. A. Ohlson, “Uncertainty resolution and the theory of depreciation measurement,” Journal of Accounting Research, 1996, Vol.34, pp.209-234.
[Fernandez, 2007] Fernandez, A., and Gomez, S., “Portfolio selection using neural networks,” Computers and Operations Research, 2007, Vol.34, pp.1177-119.
[Gencay, 1998] Gencay, R. and Thanasis, S., “Moving Average Rules, Volume and the Predictability of Security Returns with Feedforward Networks,” Journal of Forecasting, Vol. 17, 1998, pp. 401-414.
[Gold, 1999] Gold, S. and Lebowitz, P., “Computerized Stock Screening Rules for Portfolio Selection,” Financial Service Review, 1999, Vol.8, pp. 61-70.
[Goldberg, 1985] Goldberg, D.E. and Lingle, R., “Alleles, Loci, and the Traveling Salesman Problem,” In Proceeding of an International Conference on Genetic Algorithms and Their Application, 1985, pp. 154 -159.
[Goldberg, 1994] Goldberg, D.E., “Genetic and Evolutionary Algorithms Come of Age,” Communications of the ACM, Vol. 37, 1994, pp. 2-3.
[Goldberg, 1989] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989.
[Gondzio, 2007] Gondzio, J., Grothey, A., “Solving non-linear portfolio optimization problems with the primal-dual interior point method,” European Journal of Operational Research, Vol. 181 (3), 2007, pp. 1019-1029.
[Holland, 1975] Holland, J. H., Adaptation in Natural and Artificial Systems, Ann Arbor: The University of Michigan Press, 1975.
[Horowitz, 1993] Horowitz, Ellis, Sahni, Sartaj and Anderson-Freed, Susan, Fundamentals of Data Structures in C, 1993, Computer Science Press.
[Huang, 2008]Huang, X., “Portfolio selection with a new definition of risk.,” European Journal of Operational Research, Apr. 2008, Vol. 186 Issue 1, pp. 351-357.
[Ince,2006] Ince, H., Trafalis, T. B., “Kernel methods for short-term portfolio management,” Expert Systems with Applications, Vol. 30, 2006, pp. 535-542.
[Jang, 1993] Jang, G.S., Lai, F. and Parng, T.M., “Intelligent Stock Trading Decision Support System Using Dual Adaptive-Structure Neural Networks,” Journal of Information Science and Engineering, 1993, pp. 271-297.
[Josa-Fombellida, 2008] Josa-Fombellida, R. and Rincón-Zapatero, J. P., “Mean–variance portfolio and contribution selection in stochastic pension funding.,” European Journal of Operational Research, 2008, Vol. 187, pp. 120-137.
[Karp, 1972] Karp, R. “Reducibility Among Cominatorial Problems,” Complexity of Computer Computations, Plenum press, 1972, pp. 85-104.
[Kimoto, 1990] Kimoto, T.; Asakawa, K.; Yoda, Morio. and Takeoka, M. “Stock Market Prediction System with Modular Neural Networks,” In Proceeding of the 1990 IJCNN International Joint Conference, 1990, Vol. 1, pp. 1-6.
[Kirkpatrick, 2006] Kirkpatrick, Charles D. and Dahlquist, Julie R., Technical Analysis: The Complete Resource for Financial Market Technicians, Aug 2006, FT Press.
[Korczak, 2002] Korczak, J and Roger P. “Stock timing using genetic algorithms,” Applied Stochastic Models in Business and Industry, 2002, Vol. 18, pp. 121-134.
[Koza, 1990] Koza, J. R., Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems, 1990, Tech. Rep. STAN-CS-90-1314, Computer Science Deaprtment, Standford University.
[Koza, 1992] Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992, MIT Press.
[Koza, 1994a] Koza, J. R., Genetic Programming II: Automatic Discovery of Reusable Programs, 1994, The MIT Press.
[Koza, 1994b] Koza, J. R., Introduction to genetic programming. In: Kinnear, K. J. (Ed.), Advances in Genetic Programming, 1994, MIT Press, pp. 21–42.
[Lam, 2004] Lam, M.,“Neural network techniques for financial performance prediction: integrating fundamental and technical analysis,” Decision Supoport Systems, Vol. 37, 2004, pp. 567-581.
[Lee, 1997] Lee, C.F., Finnerty J.E. and Norton E.A., Foundations of Financial Management, WEST, 1997.
[Leinweber, 1990] Leinweber, D.J. and Arnott, R.D., “Quantitative and Computational Innovation in Investment Management,” Journal of Portfolio Management, Vol. 21-2, 1990, pp. 8-15.
[LeRoy, 1976] LeRoy, Stephen F., “Efficient Capital Markets: Comment,” Journal of Finance, Mar. 1976, Vol. 31 Issue 1, p139.
[Li, 2006] Li, J., Shi, Z. and Li, X., “Genetic programming with wavelet-based indicators for financial forecasting.,” Transactions of the Institute of Measurement and Control, 2006, Vol. 28, p285-297.
[Li, 2008] Li, H. L. and Tsai, J. F., “A distributed computation algorithm for solving portfolio problems with integer variables.,” European Journal of Operational Research, Apr. 2008, p882-891.
[Lin, 2005] Lin, D., Li, X.M. and Li, M.Q., “A genetic algorithm for solving portfolio optimization problems with transaction costs and minimum transaction lots.,” Advances in Natural Computation, Proceedings Lecture Notes in Computers Science, Vol.3612, 2005, p.p. 808-811.
[Luenverger, 1998] Luenverger, D.G., Investment Science, Oxford University Press, 1998.
[Markowitz, 1952] Markowitz, H.M., “Portfolio Selection,” Journal of Finance, Vol. 7, 1952, pp. 77-91.
[Markowitz, 1999] Markowitz, H.M., “The Early History of Portfolio Theory: 1600-1960,” Financial Analysts Journal, 1999, pp. 5-16.
[Myers, 1999] Myers, J. N., “Implementing residual income valuation with linear information dynamics,” The Accounting Review, 1999, Vol.74, pp.1-28.
[O'Connor, 2006] O'Connor, N. and Madden, M., “A neural network approach to predicting stock exchange movements using external factors,” Knowledge-Based Systems, Vol. 19(5), 2006, pp.371-378.
[Oh, 2005] Oh, K. J., Kim, T. Y. and Min, S., “Using genetic algorithm to support portfolio optimization for index fund management,” Expert Systems with Applications, Vol. 28 (2), 2005, pp.371-379.
[Oh, 2006] Oh, K. J., Kim, T. Y., Min, S. H., Lee, H. Y., “Portfolio algorithm based on portfolio beta using genetic algorithm,” Expert Systems with Applications, Vol. 30 (3), 2006, pp.527-534.
[Ohlson, 1995] Ohlson, J. A., “Earning, book value, and dividends in equity valuation,” Contemporary Accounting Research, 1995, 11(2):661-687.
[Packard, 1987] Packard, N.H., “A Genetic Learning Algorithm for the Analysis of Complex Data,” Complex System, Vol. 4, 1987, pp. 543-572.
[Park, 2007] Park, C.H. and Irwin, S. H., “What do we know about the profitability of technical analysis?,” Journal of Economic Surveys, Vol. 21, 2007, pp. 786-826.
[Potvin, 2004] Potvin J., Soriano P. and Vallee M., “Generating trading rules on the stock markets with genetic programming,” Computers and Operatoions Research, Vol. 31, 2004, pp. 1033-1047.
[Qi, 2006] Qi, M. and Wu, Y., “Technical trading-rule profitability, data snooping, and reality check: Evidence from the foreign exchange market,” Journal of Money Credit and Banking, Vol. 38, 2006, pp. 2135-2158.
[Richard, 1998] Bauer, Richard J. Jr. and Dahlquist, Julie R., Technical Market Indicators Analysis & Performance, Nov. 1998, Wiley.
[Roberts, 2004] Roberts, M.C., “Technical analysis and genetic programming: Constructing and testing a commodity portfolio,” Journal of Futures Markets, Vol. 25, 2005, pp. 643-660.
[Sehgal, 2002]S. Sehgal, A. Garyhan, “Abnormal Returns Using Technical Analysis: the Indian Experience,” Finance India, Vol. 16, No.1, 2002, pp.181-203.
[Sharpe, 1963] Sharpe, W. F., “A Simplified Model for Portfolio Analysis,” Management Science, Vol. 9, 1963, pp. 277-293.
[Sharpe, 1964] Sharpe, W.F., “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk,” Journal of Finance, Vol. 19, 1964, pp. 425-442.
[Smith, 1985] Smith, D., “Bin Packing with Adaptive Search,” In Proceeding of an International Conference on Genetic Algorithms and Their Application, 1985, pp. 202-206.
[Srinivas, 1994] M. Srinivas and M. P. Lalit, “Genetic Algorithms: A Survey ,” IEEE Computer, Vol.27, 1994, pp.18-20.
[Syswerda, 1989] Syswerda, G., “Uniform Crossover in Genetic Algorithms,” In Proceedings of the Third International Conference on Genetic Algorithms, J. Schaffer (ed.), Morgan Kaufmann, 1989, pp. 2-9.
[Tanaka, 2000] Tanaka, H., Guo, P. and Turksen, I.B., “Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions,” Fuzzy Sets and Systems, Vol. 111, 2000, pp. 387-397.
[Thawornwong, 2003] S. Thawornwong, D. Enke, and C. Dagli “Neural Networks as a Decision Maker for Stock Trading: A Technical Analysis Approach,” Journal of Smart Engineering Systems Design, 2003, pp.1-13.
[Trippi, 1996] Trippi, R.R. and Lee, J.K., Artificial Intelligence in Finance & Investing, IRWIN, 1996.
[Vickery, 1991] Vickery, S., “A theory of performance competence revisited,” Decision Science, 1991, pp. 635-643.
[Wade, 1996] Wade, Rahima C. and Yarbrough, D.B., “Portfolios: A Tool for Reflective Thinking in Teacher Education?,” Teaching & Teacher Education, Vol. 12, 1996, pp. 63-79.
[Wang, 2000] Wang, J., “Trading and hedging in S&P 500 spot and futures markets using genetic programming,” JOURNAL OF FUTURES MARKETS, Vol. 20, 2000, pp. 911-942.
[Wu, 2007] Wu, M. C., Chang, W. J., “A short-term capacity trading method for semiconductor fabs with partnership,” Expert Systems with Applications, Vol. 33(2), 2007, pp. 476-483.
[Xia, 2000] Xia, Y.; Liu, B., Wang, S. and Lai, K. K., “A model for portfolio selection with order of expected returns,” Computer & Operations Research, 2000, pp. 409-422.
[Yu, 2008] Yu, L.; Wang, S. and Lai, K. K., “Neural network-based mean-variance-skewness model for portfolio selection,” Computer & Operations Research, 2008, pp. 34-46.
[Zapranis, 2006] Zapranis, A., “Testing the random walk hypothesis with neural networks,” Artificial Netural Networks- ICANN 2006, PT 2 Lecture Notes in Computer Science, 2006, pp. 664-671.
[Zhang, 2004] Zhang, Y.L. and Hua, Y., “Portfolio optimization for multi-stage capital investment with neural networks,” Advances in Neural Networks - ISNN 2004, PT 2 Lecture Notes in Computer Science, Vol. 3174, 2004, pp. 982-987.
指導教授 陳稼興、陳彥良
(Jiah-Shing Chen、Yen-Liang Chen)
審核日期 2008-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明