博碩士論文 90521003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.226.243.130
姓名 林慧玲(Hui-Ling Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用投影法作受擾動奇異系統之強健性分析
(Robustness analysis of linear descriptor systems: utilizing projection method)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究★ 結合高斯混合超級向量與微分核函數之 語者確認研究
★ 敏捷移動粒子群最佳化方法★ 改良式粒子群方法之無失真影像預測編碼應用
★ 粒子群演算法應用於語者模型訓練與調適之研究★ 粒子群演算法之語者確認系統
★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究★ 利用語者特定背景模型之語者確認系統
★ 智慧型遠端監控系統★ 正向系統輸出回授之穩定度分析與控制器設計
★ 混合式區間搜索粒子群演算法★ 基於深度神經網路的手勢辨識研究
★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統★ 非監督式快速語者調適演算法研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文中,主要是針對具參數不確定的連續和離散之奇異系統,做一個完整的分析研究。奇異系統優於狀態空間系統,可以很自然的描述一動態系統,故奇異系統廣泛地應用在電路、有界控制系統、電源系統、化學系統、經濟系統、生物學、機器人學、航空模型等其他領域。由於在實際的環境中,不管儀器再精密或是情況再理想,一定有不可避免的擾動或是參數變動的問題。所以,這些不確定因素的考量,是系統所不可或缺的。
本論文分別針對受擾動的連續和離散之奇異系統,提出投影法去求解受擾動系統穩定性分析的問題,並把結果延伸至分析奇異之延遲系統的強健穩定性,最後由給定的例子來證明我們的說法,並和先前文獻比較,得知我們的方法可以有效的降低系統保守性。
本論文的研究主要就是利用投影法,對上述的問題做一較完整的探討,我們期望能夠得到一個更精確的穩定準則。
摘要(英) In this thesis, the robust stability of linear continuous-time, discrete-time and discrete state-delayed descriptor systems is investigated. Sufficient conditions are derived for ensuring that the mentioned linear descriptor systems remain asymptotically stable. The presented criteria in a complex LMI manner are checked by the projection method. The given numerical examples demostrate the validity and efficiency of the proposed method.
關鍵字(中) ★ 奇異系統
★ 強健控制
關鍵字(英) ★ singular systems
★ robust control
論文目次 CONTENTS
CHAPTER 1 Introduction .……….…………….….…………………….1
1.1 Motivation …………………………..…………………………….…….….1
1.2 Literature survey …………...………………………….……………………2
1.3 Organization of this thesis ……...……….…………….……………………2
CHAPTER 2 The projection scheme introduction .…………..……4
2.1 Introduction ……….………………………………………………………..4
2.2 The concept of the projection scheme …………………...…………………4
2.3 Projection operators for Hermitian matrices .….………………...…………5
2.4 Conclusions ………………………………….………………………...…10
CHAPTER 3 Robust stability analysis for uncertain
continuous and discrete descriptor systems …..…. 11
3.1 Introduction ………………………………………….……………………11
3.2 Problem formulation and preliminary ………..……….…………………..11
3.3 Robust stability analysis ……….…………………………….…………..13
3.4 Robustness analysis algorithm …………………………………………...17
3.5 Examples ……………………………………………….…………………19
3.6 Conclusions ………………………………………….……………………27
CHAPTER 4 Robust stability analysis for uncertain
discrete descriptor systems with state delay .…..28
4.1 Introduction …………………………………………………………….…28
4.2 Problem formulation and preliminary ………..……………………….…..28
4.3 Robust stability analysis …….………………………………….………..30
4.4 Robustness analysis algorithm …………………………………….……..33
4.5 Examples ……………………………………………….…………………34
4.6 Conclusions …………………………………………………….…………43
CHAPTER 5 Conclusions …………………………………….………44
參考文獻 systems,” IEEE Trans. Automat. Contr., vol. 32, pp. 672-687, 1987.
[2] S. Boyd and L. T. Ghaoui, E. Feron and V. Balakrishnan, “Linear matrix inequalities in systems and control theory,” SIAM, Philadelphia, 1994.
[3] A. Bunse-Gerstner, V. Mehrmann, and N. K. Nichols, “Regularization of descriptor systems by output feedback,” IEEE Trans. Automat. Contr., vol. 39, pp. 1742-1748, 1994.
[4] C. T. Chen, Linear Systems Theory and Design. New York: Holt, Rinehart, and Winston, 1984.
[5] M. Chilali and P. Gahinet, “ Design with pole placement constraints: An LMI approach” IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 358-367, 1996.
[6] J. H. Chou and W. H. Liao, “Stability robustness of continuous-time perturbed descriptor systems,” IEEE Trans. Circuits and Systems, vol. 46, no. 9, pp. 1153-1155, 1999.
[7] J. Daafouz, J. Bernussou, “Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties,” Systems Control Letters, vol. 43, pp. 355-359, 2001.
[8] L. Dai, Singular Control systems. Berlin, Germany: Springer-Verlag, 1989.
[9] J. Douglas and M. Athans, ”Robust linear quadratic designs with real parameter uncertainty,” IEEE Transactions on Automatic Control, vol. 39, pp. 107-111, 1994.
[10] C. H. Fang, “Robust stability of generalized state-space systems,” Ph.D. dissertation, Dept. Electrical Eng., National Sun Yat-Sen Univ., Taiwan, R.O.C., 1997.
[11] P. Gahinet, A. Nemirovski and A. J. Laub, LMI control toolbox user’s guide, Natick, Ma: The mathworks Inc., 1995.
[12] Z. Gao and P. A. Antsaklis, “Explicit asymmetric bounds for robust stability of continuous and discrete-time systems,” IEEE Trans. Automat. Control., vol. 38, no. 2, pp. 332-335, 1993.
[13] K. M. Grigoriadis and R. E. Skelton, ”Low-order control design for LMI problems using alternating projection methods,” Automatica., vol. 32, no. 8, pp. 1117-1125, 1996.
[14] L. G. Gubin, B. T. Polyak and E. V. Raik, ”The method of projections for finding common point of convex sets,” USSR Comp. Math. Phys, 7, pp. 1-24, 1967.
[15] N. J. Higham, ”Computing the nearest symmetric positive-semidefinite matrix,” Linear Algebra and its Applications, vol. 103, pp. 103-118, 1988.
[16] S. N. Huang, J. X. Qian and H. H. Shao, ”Robustness bounds for continuous systems with LQ regulators,” IEE, 1995.
[17] S. N. Huang and W. Ren, “New results on the robust bounds of linear uncertain systems,” International Journal of Systems Science, vol. 28, no.2, pp. 141-144, 1997.
[18] L. S. Jennings, K. L. Teo, V. Rehbock, and W. X. Zheng, “Optimal control of singular systems with a cost on changing control,” Dynamics Contr., vol. 6, pp. 63-89, 1996.
[19] P. Jiang, H. Su and J. Chu, “LMI approach to optimal guaranteed cost control for a class of linear uncertain discrete systems,” AACC, 2000.
[20] Y. T. Juang, “Robust stability and robust pole assignment of linear systems with structured uncertainty,” IEEE Trans. Automat. Control., vol. 36, no. 5, pp. 635-637, 1991.
[21] Y. T. Juang and S. L. Tung and T. C. Ho, “Correspondence sufficient condition for asymptotic stability of discrete interval systems,” International Journal Control , vol. 49, no. 5, pp. 1799-1803, 1989.
[22] L. H. Keel, S. P. Bhattacharyya and Jo. W. howze, ”Robust control with structured perturbations,” IEEE Transactions on Automatic Control, vol. 33, pp. 68-78, 1988.
[23] C. H. Lee, T. H. S. Li, and F. C. Kung, “D-stability analysis for discrete systems with a time delay,” Syst. Control Lett., vol. 19, no. 3, pp. 213-219, 1992.
[24] J. C. Lee, E. A. Misawa and K. N. Reid, ”Asymmetric robustness measure of engenvalue distribution for uncertain linear systems with structured perturbations,” AACC, pp. 3950-3954, 1997.
[25] F. L. Lewis, “A survey of linear singular systems,” Circuits. Syst., Signal Processing, vol. 5, pp. 3-36, 1986.
[26] D. G. Luenberger, “Optimization by Vector Space Methods,” Wiley, New York, 1968.
[27] Y. Nesterov and A. Nemirovsky, ”Interior-point polynomial methods in convex programming,” Studies in Applied Mathematics (SIAM.), Philadelphia, 1994.
[28] M. C. de Oliveira, J. Bernussou, J. C. Geromel, “A new discrete-time robust stability condition,” Systems Control Letters, vol. 37, pp. 261-265, 1999.
[29] C. W. Ramos, L. D. Peres, “A less conservative LMI condition for the robust stability of discrete-time uncertain systems,” Systems Control Letters, vol. 43, pp. 371-378, 2001.
[30] C. W. Ramos, L. D. Peres, “An LMI approach to compute robust stability domains for uncertain linear systems,” AACC, pp. 4073-4078, 2001.
[31] C. W. Ramos, L. D. Peres, “An LMI condition for the robust stability of uncertain continuous-time linear systems,” IEEE Trans. Automat. Control., vol. 47, no. 4, pp. 675-678, 2002.
[32] K. M. Sobel, S. S. Banda and J. H. Yeh, ”Robust control for linear systems with structured state space uncertainty,” International Journal of Control, vol. 50, pp. 1991-2004, 1989.
[33] J. H. Su and I. K. Fong, “Robust stability analysis of linear continuous / discrete-time systems with output feedback controllers,” IEEE Trans. Automat. Control., vol. 38, no. 7, pp. 1154-1158, 1993.
[34] T.-J. Su and W.-J. Shyr, “Robust D-stability for linear uncertain discrete-delay systems,” IEEE Trans. Automat. Control, vol. 39, pp. 425-428, Feb. 1994.
[35] S. Tarbouriech and E. B. Castelan, “Eigenstructure assignment approach for constrained linear continuous-time singular systems,” Syst. Contr. Lett., vol. 24, pp. 333-343, 1995.
[36] A. Tornambe, “Simple procedure for the stabilization of a class of uncontrollable generalized systems,” IEEE Trans. Automat. Contr., vol. 41, pp. 603-607, 1996.
[37] H. Trinh and M. Aldeen, “D-stability analysis of discrete-delay perturbed systems,” Int. J. Control, vol. 61, no. 2, pp. 493-505, 1995.
[38] J. S. H. Tsai, C. P. Fan, and L. S. Shich, “Implementation of state-feedback control law for singular systems via an input-output feedback structure,” Int. J. Syst. Sci., vol. 26, pp. 2139-2158, 1995.
[39] G. C. Verghese, B. C. Levy, and T. Kailath, “A generalized state-space for singular systems,” IEEE Trans. Automat. Contr., vol. 26, pp. 811-831, 1981.
[40] H. Xi, “Guaranteed estimation performance filter for discrete-time descriptor systems with uncertain noise,” Int. J. Syst. Sci., vol. 28, pp. 113-121, 1997.
[41] Shengyuan Xu, James Lam, and Liqian Zhang, “Robust D-stability for uncertain discrete singular systems with stay delay,” IEEE Trans. Circuits and systems, vol. 49, no. 4, pp. 551-555, 2002.
[42] A. Xue and L. Yu, “Robustness analysis for the uncertain systems with guaranteed cost design,” IEEE, 2000.
[43] A. Xue and Y. Sun, “Robustness analysis of uncertain linear systems with guaranteed cost control,” AACC, 1999.
[44] A. K. Xue, X. Q. Xiong and Y. X. Sun, “Robust bounds on unstructured and structured uncertain systems with optimal guaranteed cost design,” IEEE, 1999.
[45] T. J. Yu and P. C. Muller, “Design of controller for linear mechanical descriptor systems,” ASME J. Dynamic Syst., Measurement, Contr., vol. 116, pp. 628-634, 1994.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2003-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明