博碩士論文 90521007 詳細資訊


姓名 曾仁煒(Zen-Wei Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 無速度感測器之直接轉矩控制感應馬達驅動器設計
(Design of sensorless direct torque control for induction motor drives)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 感應馬達在本身結構特性上有許多的優點,如架構堅固、亦於維護、價格便宜等優點,所以在工業應用的場合中,感應馬達是扮演了相當重要的角色。近幾年來更由於向量控制技術日漸成熟,特別是直接轉矩向量控制的發展,使得感應馬達能擁有如直流馬達一般優異的操控性能,所以可以預見,結合向量控制技術的感應馬達驅動器將會漸漸地成為市場上的主流。
然而在高性能的感應馬達控制中,為了使整個轉速操作範圍都有快速的轉速轉矩響應,通常都需要加裝速度感測器作回授信號的量測,但是在驅動系統中安裝感測器不僅增加系統的成本、維修上的難度、也降低了驅動器的強健性及系統的可靠度。
因此在本論文中將設計無感測器系統,以避免感測器所造成上述的問題。設計的方式是以端電壓及線電流的回授,估算出磁通的同步旋轉速度,並經由滑差轉速的估算與補償後,得到估測的馬達轉速,完成無感測器閉迴路的速度控制。並且針對傳統無感測器系統在加載操作情況下,轉矩無法有效輸出的缺點,提出以模糊滑差轉速估算器來取代傳統滑差轉速估測式,有效的提昇加載時系統的轉矩響應,使得系統在無需感測器的情況下,仍然具有良好的轉速及轉矩輸出,增加系統的可行性與實用性。
由於本論文所設計的無感測器系統是以直接轉矩控制為基礎,所以其效能是直接的受到磁通估測準確性所影響。因此,本論文將針對低轉速時磁通估測所造成的問題,應用新型磁通估測補償器來估算磁通,有效的改善低轉速時磁通估算的正確性,同時也提高了無感測器系統在低轉速時的性能。
論文中所提出的方法,經由模擬驗證其可行性後,再以硬體實際測試結果,來驗證其高度的效能,藉以佐證出新型無感測器之直接轉矩控制感應馬達驅動系統於實用上的價值。
摘要(英) Induction motors have been widely used in industry applications. According to its mechanical structure identities, the induction motor has a lot of advantages such as stable structure, low price, simplicity of maintenance and so on. Recently, vector control technique has been well developed, especially the direct torque control (DTC) algorithm. It has been shown that vector controlled induction motors have the properties as DC motors.
Most high performance induction motor driver systems used the speed sensor to detect the feedback signal (rotor speed). However, using encoder would decrease the competitive advantage of induction motor and reduce the reliability of the system. To avoid using speed sensor, this thesis, firstly estimates the synchronous speed and slip speed from motor terminal voltages and currents. The difference of these two signals equals rotor speed, which is fed back to the speed control loop in the sensorless DTC speed control system.
Experiment results show that this kind of sensorless direct torque control could not drive the system when loading. To solve this problem, a fuzzy slip-speed estimator is proposed. It is shown that the new estimator can estimate motor speed correctly and induce the torque effectively even in loading condition. Moreover, the accuracy of stator flux is critical to sensorless DTC system. To accurately estimate stator flux in low speed range, a new method is used to estimate stator flux, which effectively improves the performance of sensorless system at low speed range.
The performance of the sensoless control system is investigated and verified experimentally.
關鍵字(中) ★ 向量控制
★ 直接轉矩控制
★ 模糊估測器
★ 無感測器
關鍵字(英) ★ Direct Torque Control
★ Fuzzy Estimator
★ Sensorless
★ Vector Control
論文目次 中文摘要……………………………………………………Ⅰ
英文摘要……………………………………………………Ⅱ
目錄…………………………………………………………Ⅲ
圖目錄………………………………………………………Ⅴ
表目錄………………………………………………………Ⅸ
符號列表…………………………………………………Ⅹ
第一章 緒論
1.1研究動機與目的…………………………………………………………………1
1.2研究背景…….………………………………………………………………...2
1.3內容大綱…….………………………………………………………………...4
第二章 感應馬達之動態模型與系統描述
2.1 三相感應馬達旋轉原理……………………………………………………….7
2.2 感應馬達之動態數學模型………….………………………………………..8
2.2.1 感應馬達動態數學模型推導……………………………………………….9
2.2.2 座標軸轉換………………………………………..……………………..13
2.3 感應馬達轉矩與磁通命令………………………..……..…………………17
2.4 空間向量調變技術…………………………………………………………..18
2.5 全數位化驅動器架構概述……………………………………………………22
第三章 直接轉矩之速度控制
3.1 直接轉矩速度控制…………………………………………………………..25
3.2 磁通與轉矩之控制…………………………………………..………………28
3.2.1 磁通之控制……………………….……………………………………...29
3.2.2 轉矩之控制………………………….…………………………………...30
3.3 切換向量表之選擇……………………………………………………………31
3.4 模擬與實驗……………………………………………………………………33
3.5 結論與討論…………………………………………………………………..45
第四章 無速度感測器之直接轉矩控制系統設計
4.1 無速度感測之設計方式……………………………………………………..47
4.1.1 同步旋轉速度估測方式………………………………………………....49
4.1.2 滑差轉速估測方式………………………………………………………..52
4.2 無速度感測之直接轉矩控制系統設計…………………………….……...55
4.3 軟體設計流程…………………………………………………………………56
4.4模擬與實驗…………………………………………………………………….58
4.5結論與討論…………………………………………………………………….72
第五章 新型無速度感測器之直接轉矩控制系統設計
5.1 模糊滑差轉速估測器………………………………………………………..74
5.1.1 模糊滑差轉速估測器設計…………………………………………………75
5.2 磁通估算之改善……………………………………………………………..81
5.3新型無速度感測器之直接轉矩控制系統……...…………………………..84
5.4模擬與實驗……………………………………………………………….……86
5.5結論與討論……………………………………………………………………101
第六章 結論與建議……………………………………………………………..102
附錄A …………………………………………………………………………….104
參考文獻……………………………………………………………………………….XII
作者簡歷……………………………………………….……………………………….XX
參考文獻 [1]ABB Corporation Power Electronics System Products, http://www.abb.com/.
[2]I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor” IEEE Trans. Industry Applications, vol.25, no.2, pp.257-264, Mar./Apr. 1989.
[3]T. G. Haberler and D. M. Divan,“Control strategies for direct torque control using discrete pulse modulation”IEEE Trans. Industry Applications, vol. 27, no. 5, pp.893-901, Sept./Oct. 1991.
[4]D. Casadei, G. Grandi, G. Serra, and A. Tani,“Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines”IECON ‘94 20th International Conference on Industrial Electronics, Control and Instrumentation, vol.1, pp. 299-304, 1994.
[5]G. Buja and D. Casadei,“DTC-based strategies for induction motor drives”IECON ‘97 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol. 4, pp. 1506-1516, 1997.
[6]M. P. Kazmierkowski and A. B. Kasprowicz,“Improved direct torque and flux vector control of PWM inverter-fed induction motor drives”IEEE Trans. Industry Electronics, vol. 42,no.4, pp.344-349, Aug. 1995.
[7]H. Y. Zhong, H. P. Messinger, and M. Rashad,“A new micro-computer based direct torque control system for three phase induction motor”IEEE Trans. Industry Applications, vol.27, no.2, pp. 294-298, Mar./Apr. 1991.
[8]C. Attaianese, A. Perfetto, A. Damiano, and I. Marongiu,“A direct torque control algorithm imposing the mechanical response of speed controlled induction motor drives,”ISIE‘96, Proceedings of the IEEE International Symposium on Industrial Electronics, vol.1, pp.157-162, 1996.
[9]T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert,“Direct torque control of induction machines using space vector modulation”IEEE Trans. Industry Applications, vol.28, no.5, pp.1045–1053, Sept./Oct. 1992.
[10] A. Purcell and P. Acarnley,“Multilevel hysteresis comparator forms for direct torque control schemes”Electronics Letters, vol.34, no.6, pp.601–603, Mar. 1998.
[11] D. Casadei, G. Serra, and K. Tani,“Implementation of a direct control algorithm for induction motors based on discrete space vector modulation” IEEE Trans. Power Electronics, vol.15, no.4, pp.769-777, July. 2000.
[12] C. Attaianese, V. Nardt, A. Perfetto, and G. Tomasso, “Vectorial Torque control: A novel approach to torque and flux control of induction motor drives”IEEE Trans. Industry Applications, vol.35, no.6, pp.1399-1405, Nov./Dec. 1999.
[13] E. K. Sng, A. C. Liew, and T. A. Lipo,“New Observer- Based DFO scheme for speed sensorless Field-Oriented drives for Low-Zero-Speed operation”IEEE Trans. Power Electronics, vol.13, no.5, pp.959-968, Sept. 1998.
[14] M. S. Nait Said and M. E. H. Benbouzid,“Induction motors direct field oriented control with robust On-Line tuning of rotor resistance”IEEE Trans. Energy Conversion, vol.14, no.4, pp.1038-1042, Dec. 1999.
[15] A. Consoli, G. Scarcella and A. Testa,“A new Zero-Frequency Flux-Position Detection approach for Direct-Field-Oriented- Control drive”IEEE Trans. Industry Applications, vol.36, pp.797-804, no.3, May./June. 2000.
[16] P. Vas, Vector Control of AC Machines, Clarendon Press Oxford, 1990.
[17] D. W. Novotny, T. A. Lipo, Vector Control and Dynamic of AC Drives, Clarendon Press Oxford, 1990.
[18] M. N. Marwali, A. Keyhani and W. Tjanaka,” Implementation of indirect vector control on an integrated digital signal processor-based system” IEEE Trans, Energy Conversion vol.14, no.2, pp. 139-146, Jun. 1999.
[19] A. Arias, L. Romeral, E. Aldabas, and M. G. Jayne,“Improving direct torque control by means of fuzzy logic”Electronics Letters, vol.37, no.1, pp. 69-71, Jan. 2001.
[20] P.Z. Grabowski, M.P. Kazmierkowski, B.K. Bose, and F. Blaabjerg,“A simple Direct-Torque Neuro-Fuzzy control of PWM- Inverter-Fed induction motor drive ”IEEE Trans. Industrial Electronics, vol.47, no.4, pp.863-870, Aug. 2000.
[21] Y. S. Lai,“New random technique of inverter control for common mode voltage reduction of Inverter-Fed induction motor drives”IEEE Trans. Energy Conversion, vol.14, no.4, pp.1139-1146, Dec. 1999.
[22] Y. S. Lai, H. C. Huang, Y. S. Kuan, and C. M. Young,“A new random inverter control technique for motor drive”APEC‘98, Conference Proceedings Applied Power Electronics Conference and Exposition, vol.1, pp.101-107, 1998.
[23] K. B. Lee, J. H. Song, Ick Choy and Ji-Yoon Yoo, “Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency” IEEE Trans. Power Electronics, vol.17 no.2, pp.255-264, Mar. 2002.
[24] F. Profumo, G. Griva, M. Pastorelli, J. MoreiraDe and R. Doncker, “Universal field oriented controller based on air gap flux sensing via third harmonic stator voltage” IEEE Trans. Industry Applications, vol. 30, no.2, pp.448-455, Mar./Apr. 1994.
[25] L. Kreindler, J. C. Moreira, A. Testa and T. A.Lipo, “Direct field orientation controller using the stator phase voltage third harmonic” IEEE Trans. Industry Applications, vol.30, no.2, pp.441-447, Mar./Apr. 1994.
[26] L. Zhen and L. Xu, “ Sensorless field orientation control of induction machines based on a mutual MRAS scheme” IEEE Trans. Industrial Electronics, vol.45, no.5, pp.824-831, Oct. 1998.
[27] C. Schauder, “ Adaptive speed identification for vector control of induction motors without rotational transducers ” IEEE Trans, Industry Applications, vol.28, no.5, pp.1054-1061 Sep./Oct. 1992.
[28] M. E. Elbuluk, Liu Tong and I. Husain, “ Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls” IEEE Trans. Industry Applications, vol.38, no.3, pp.879-886, May./Jun. 2002.
[29] J. Maes, J. A. Melkebeek, “Speed-sensorless direct torque control of induction motors using an adaptive flux observer” IEEE Trans. Industry Applications, vol.36, no.3, pp.778-785, May./Jun. 2000.
[30] M. Tsuji, S. Chen, K. Izumi and E. Yamada, “ A sensorless vector control system for induction motors using q-axis flux with stator resistance identification” IEEE Trans. Industrial Electronics, vol.48, no.1, pp.185-194, Feb. 2001.
[31] Y. R. Kim, S. K. Sul and M. H. Park, “ Speed sensorless vector control of induction motor using extended Kalman filter” IEEE Trans, Industry Applications, vol.30, no.5, pp.1225-1233, Sep./Oct. 1994.
[32] S. H. Kim, J. Y. Yoo and G. T. Park, “ Speed-sensorless vector control of an induction motor using neural network speed estimation” IEEE Trans. Industrial Electronics, vol.48, no.3, pp.609-614, Jun. 2001.
[33] P. Vas, Sensorless and Direct Torque Control, Clarendon Press Oxford, 1998.
[34] J. Faiz, M. B. Sharifian, “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle” IEEE Trans. Energy Conversion, vol.16, no.1, pp.104-109, Mar. 2001.
[35] J. N. Nash, “Direct torque control, induction motor vector control without an encoder” IEEE Trans. Industry Applications, vol.33, no.2, pp.333-341, Mar./Apr. 1997.
[36] U. Baader, M. Depenbrock and G. Gierse, “Direct self control (DSC) of inverter-fed induction machine: A basis for speed control without speed measurement” IEEE Trans. Industry Applications, vol.28, no.3, pp.581–588,1992.
[37] T. G. Habetler, F. Profumo, G. Griva, M. Pastorelli, and A. Bettini, “Stator resistance tuning in stator flux field-oriented drive using an instantaneous hybrid flux estimator” IEEE Trans. Power Electronics, vol.13, pp. 125–133, Jan. 1998.
[38] K. D. Husrt, T. G. Habetler, G. Griva, and F. Profumo, “Zero speed tacholess IM torque control: Simply a matter of stator voltage integration” IEEE Trans. Industry Applications, vol. 34, pp.790–795, July./Aug. 1998.
[39] J. Huand and B. Hu, “New integration algorithms for estimating motor flux over a wide speed range” IEEE Trans. Power Electronics, vol. 13, pp.969–976, Sept. 1998.
[40] M. H. Shin; D. S. Hyun; S. B. Cho and S. Y. Choe, ”An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors” IEEE Trans. Power Electronics, vol.15, no.2, pp.312-318, Mar. 2000.
[41] K. D. Hurst, T. G. Habetler, G. Griva and F. Profumo, “Zero-speed tacholess IM torque control: simply a matter of stator voltage integration” IEEE Trans. Industry Applications, vol.34, no.4, pp.790-795, Jul./Aug. 1998
[42] N. R Idris and A. H. M Yatim, “An improved stator flux estimation in steady-state operation for direct torque control of induction machines” IEEE Trans. Industry Applications, vol.38, no.1, pp.110-116, Jan./Feb. 2002.
[43] D. C. Lee and G. M. Lee, “A novel overmodulation technique for space-vector PWM inverters,” IEEE Trans. Power Electronics, Vol.13, No.6, pp. 1144 –1151, Nov. 1998.
[44] Y. F. Zhao and T.A. Lipo, “Space vector PWM control of dual three-phase induction machine using vector space decomposition,” IEEE Trans. Industry Applications, vol.31, no.5, pp.1100 –1109, Sept./Oct. 1995.
[45] TMS320C24x DSP Controllers Reference Set, Texas Instruments, 1997.
[46] TMS320C24x DSP Controllers Evaluation Module Technical Reference Set, Texas Instruments, 1997.
[47] TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User‘s Guide, Texas Instruments, 1995.
[48] TMS320C2xx C Source Debugger User‘s Guide, Texas Instruments, 1995.
[49] TMS320C1x/C2x/C2xx/C5x Optimizing C Compiler User‘s Guide, Texas Instruments, 1995.
[50] Digital Signal Processing Solution for AC Induction Motor, Application Report Literature Number: BPRA043, Texas Instruments, 1997.
[51] TMS320F20x/F24x DSP Embedded Flash Memory Technical Reference, Application Report Literature Number: SPRU282, Texas Instruments, 1998.
[52] B. K. Bose, Modern Power Electronics and AC Drivers, Prentice Hall, 2002.
[53] D. Casadei, G. Serra and A. Tani, “ Steady-state and transient performance evaluation of a DTC scheme in the low speed range” IEEE Trans. Power Electronics, vol.16, no.6, pp.846-851, Nov. 2001.
[54] J. S. Ryu, I. S. Yoon, K. S. Lee, and S. C. Hong, “Direct torque control of induction motors using fuzzy variable switching sector” IEEE Symposium. Industrial Electronics, vol.2, pp.901-906, 2001.
[55] X. Yang and W. Oghanna, “Fuzzy direct torque control of induction motor with stator flux estimation compensation” IEEE Conference. Industrial Electronics, vol.2, pp.505-510, 1997.
[56] X. Yang and W. Oghanna, “Study on fuzzy control of induction machine with direct torque control approach” IEEE Symposium. Industrial Electronics, vol.2, pp.625-630, 1997.
[57] Y. Tang and L. Wu, “Fuzzy logic application for intelligent control of a variable speed drive” IEEE Trans. Energy Conversion, vol.9, no.4, pp.679-685, Dec. 1994.
[58] S. A. Mir, M. E. Elbuluk, and D.S. Zinger, “Fuzzy implementation of direct self-control of induction machines” IEEE Trans. Industry Applications, vol.30, no.3, pp.729-735, May./June. 1994.
[59] 王文俊編著,認識Fuzzy,全華科技圖書,中華民國90年9月。
[60] 孫宗瀛、楊英魁編著,Fuzzy 控制:理論、實作與應用,全華科技圖書,中華民國86年3月。
[61] G. Guidi and H. Umida, “A novel stator resistance estimation method for speed-sensorless induction motor drives” IEEE Trans. Industry Applications, vol.36, no.6, pp.1619-1627, Nov./Dec. 2000.
[62] K. Akatsu and A. Kawamura, “Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection” IEEE Trans. Industry Applications, vol.36, no.3, pp.764-771 May./Jun. 2000.
[63] 劉昌煥編著,交流電機控制:向量控制與直接轉矩控制原理,東華書局,中華民國90年9月。
[64] 吳思正,空間向量直接轉矩控制,電機月刊,第六卷,第七期,pp.151-157,1996。
[65] 王文智、王俊傑,無量測感應馬達之驅動系統,電機月刊,第六卷,第七期,pp.129-133,1996。
[66] 蔡明祺、李士杰,伺服馬達與驅動控制技術概況,電力電子技術月刊,1996。
[67] 林正浩,“三相感應電動機之DSP直接轉矩控制系統研製”,國立台灣大學電機工程所碩士論文,中華民國90年6月。
[68] 陳皇志,“馬達之新型直接轉矩控制研究”,中央大學電機所碩士論文,民國90年6月。
[69] 江坤信,“感應馬達之直接轉矩控制之低轉速驅動補償策略” 中央大學電機所碩士論文,民國91年6月。
指導教授 徐國鎧(K.K. Shyu) 審核日期 2003-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡