博碩士論文 90521011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.210.201.170
姓名 蔡明倫(Ming-Lung Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三節式機器人之爬行控制
(Crawling control of a three-link robot)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是製作一個類似毛毛蟲外型的三節式機器人,有二個關節各由一顆直流馬達帶動其動作,我們分別以PC和FPGA來實現其控制目的,完成爬行、站立等動作。本機器人的製作及控制由兩位同學合作完成,分別以三節式機器人之站立控制及三節式機器人之爬行控制二本論文呈現。而本論文主要在探討三節式機器人如何在不同的傾斜地面上執行爬行前進的動作。由於機器人原本的設計是用來執行由平躺到直立的動作,因此在機構設計上並沒有做其他動作的考量,所以整個爬行移動的策略設計可說是從無到有。在硬體方面,我們使用直流馬達來驅動三節式機器人,並利用編碼器所取得的馬達位置與機器人底部傾斜器所取得的角度資訊,回傳至系統來得知機器人的動作狀況。其中我們採用模糊控制器控制重心與馬達的位置,使機器人能順暢的在不同地面傾斜度或摩擦力下成功爬行前進。
摘要(英) The field of researching in robots is very extensive. Our three-link robot is simple of hardware in structure, but many functions. We control the robot to crawl, stand-up and lie-down successfully. The robot was made by three links and two joints, every joint was controlled by one motor. Two classmates worked together to manufacture and control this robot. They have written two theses, i.e., the standing and crawling control of a three-link robot, respectively. This thesis emphasizes how a three-link robot keeps balance and stands on a slope. The system of robot got the angle of inclination between the bottom of robot and the horizontal, the encoder return the signal of positional motor, and the signal of encoder was sent to the chip of FPGA or PC, then sent the control signal to the motors to make the variety of action after evaluate action and control algorithms. If the floor is in the range of 7 degrees, the robot can detect states and adjust it’s posture automatically, make sure of action was perfect smoothly. In the structure of hardware, we use PC or FPGA, D/A, A/D and noise filter circuit to complete the system of control.
關鍵字(中) ★ 機器人
★ 模糊
★ 爬行
關鍵字(英) ★ fpga
★ crawl
★ fuzzy
★ robot
論文目次 摘要……………………………………………………………………I
圖目錄…………………………………………………………………V
表目錄………………………………………………………………VIII
第一章 緒論………………………………………………………1
1.1 研究動機與目的…………………………………………………1
1.2 論文架構…………………………………………………………2
第二章 系統架構…………………………………………………3
2.1 三節式機器人之硬體架構………………………………………3
2.2 PC平台之系統架構………………………………………………6
2.3 FPGA平台之系統構………………………………………………8
2.4 FPGA內部電路架構.……………………………………………11
第三章 行動策略…………………………………………………14
3.1機器人動作描述 …………………………………………………14
3.2爬行行動策略……………………………………………………16
3.2.1 行動概念與重心計算 ………………………………………16
3.2.2往前拉爬行運動控制 …………………………………………21
3.2.3往前推爬行運動控制 …………………………………………25
3.3控制器的設計……………………………………………………27
3.3.1控制器的輸入和輸出…………………………………………27
3.3.2歸屬函數 ………………………………………………………28
3.3.3模糊規則庫……………………………………………………30
3.3.4模糊推論與解模糊化 …………………………………………31
第四章 實驗結果…………………………………………………32
4.1 實驗設計描述……………………………………………………32
4.2 PC實驗結果………………………………………………………32
4.2.1實驗一:爬行於平面…………………………………………33
4.2.2實驗二:爬行於上坡2度與5度………………………………37
4.3以FPGA作簡單的實現……………………………………………41
4.3.1實驗一:爬行於平面…………………………………………42
4.3.2實驗二:爬行於下坡5度………………………………………44
4.3.3 實驗三:爬行於上坡5度……………………………………46
第五章 結論…………………………………………………………49
5.1 困難處與解決方法………………………………………………49
5.2 未來改進方向……………………………………………………50
5.3 結論………………………………………………………………50
參考文獻………………………………………………………………52
參考文獻 [1] M. Ahmadi and M. Buehler, “Stable control of a simulated one-legged running robot with hip and leg compliance,” IEEE Transactions on Robotics and Automation, vol. 13, Issue: 1, pp. 96–104, Feb 1997.
[2] K. Erbatur, A. Okazaki, K. Obiya, T. Takahash, and A. Kawamura, “A study on the zero moment point measurement for biped walking robots,” 7th International Workshop on Advanced Motion Control, pp. 431–436, 2002.
[3] I.Erkmen, A. M. Erkmen, F. Matsuno, R. Chatterjee, and T. Kamegawa, “Snake robots to the rescue,” IEEE Robotics & Automation Magazine, vol. 9, Issue: 3, pp. 17–25, Sep 2002.
[4] T. Geng, Y. Yang and X. Xu, “A novel one-legged robot: cyclic gait inspired by a jumping frog,” 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 1412–1417, 2002.
[5] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of honda humanoid robot,” IEEE International Conference on Robotics & Automation, vol. 2 , pp. 1321–1326, May 1998 .
[6] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, ”Planning walking patterns for a biped robot,” IEEE Transactions on Robotics and Automation, vol. 17, pp. 280–289, Issue: 3, Jun 2001.
[7] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, “A realtime pattern generator for biped walking,” IEEE International Conference on Robotics & Automation, vol. 1, pp. 31–37, 2002.
[8] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, ”Design of prototype humanoid robotics platform for HRP,” IEEE/RSJ International Conference on Intelligent Robots and System , vol. 3, pp. 2431–2436, 2002.
[9] B. Khoshnevis, R. Kovac, Wei-Min Shen, and P. Will, “Reconnectable joints for self-reconfigurable robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 584–589, 2001
[10] A. Lebaudy, J. Presser and M. Kam, “Control algorithms for a vertically-constrained one-legged hopping machine,” IEEE Conference on Decision and Control, vol. 3, pp. 2688–2693, Dec 1993.
[11] Q. Li, A. Takanishi, and I. Kato, “Learning control of compensative trunk motion for biped walking robot based on ZMP stability criterion,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 597–603, Jul 1992.
[12] J. Morimoto and K. Doya , “Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning,” Robotics and Autonomous Systems, vol. 36, Issue: 1, pp. 37–51, 2001.
[13] R. R. Playter, ”Passive Dynamics in the Control of Gymnastic Maneuvers,” Ph.D Thesis, Department of Aeronautical and Astronautical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1994.
[14] W. M. Shen and P. Will, “Docking in self-reconfigurable robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1049–1054, 2001.
[15] S. Sugano, Q. Huang and I. Kato, “ Stability criteria in controlling mobile robotic systems,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 832-838, Jul 1993.
[16] M.Yim, D. G. Duff and K. D. Roufas, “PolyBot: a modular reconfigurable robot,” Robotics and Automation, vol. 1, pp. 514–520, 2000.
[17] M. Yim, Y. Zhang and D. Duff, ” Modular robots,” IEEE Spectrum , vol. 39, pp. 30–34, Issue: 2, Feb 2002.
[18] 王文俊, “認識Fuzzy,” 全華科技圖書有限公司, 2000年2月.
[19] 鄭信源, “Verilog 硬體描述語言數位電路設計實務,” 儒林圖書有限公司, 2002年9月.
指導教授 王文俊(Wen-June Wang) 審核日期 2003-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明