博碩士論文 90521030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.235.105.97
姓名 謝東坡(Tung-Po Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦鎵/砷化鎵量子點光發射源
(In(Ga)As/GaAs Quantum Dot Light Sources)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究
★ 砷化銦量子點異質結構與雷射★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析
★ p型披覆層對量子井藍色發光二極體發光機制之影響★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究
★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響
★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析★ P型氮化銦鎵歐姆接觸層對氮化鋁銦鎵藍紫光雷射二極體特性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在利用砷化銦鎵/砷化鎵量子點為先進光源的發射源,主要內容包含傳統及量子光源兩大部分,在傳統光源部分,由於砷化銦量子點成長在砷化鎵基板上,晶格常數差異極大,量子點受到應力影響,因此一般量子點基態發光波長只能維持在1.2 mm左右,可以利用兩種不同的方式來延伸發光波長,1.成長體積較大砷化銦量子點,造成量子能階深化 2.利用砷化銦鎵披覆層除了可以降低應力影響所造成的發光波長藍位移,還可利用相分離使量子點體積更大,造成量子能階深化。然而,砷化銦鎵/砷化鎵量子點在長波長 (> 1.4 mm) 發光效率卻會嚴重的衰減,我們針對這個瓶頸,提出到兩種不同的發光衰減機制,包括:1.量子點的體積增大容易造成後續磊晶品質低劣及 2.用於延伸波長的批覆層,容易造成量子點鄰近區域的位障淺化,而降低量子點對載子的侷限能力。於此,我們分別提出兩種不同的方法來增強量子點的發光效率,我們磊晶成長高品質的批覆層及覆蓋層,來降低容易產生非輻射復合中心的機率,並利用電洞阻擋層有效地抑制發光效率的衰減,於此,我們是世界上首先將發光波長延伸至1.55 mm的團隊,至今仍是世界記錄。
第二部分是量子光源,傳統的量子點光源研究大部分聚焦在量子點的群體發光結果,如:發光二極體、半導體雷射等等,單一量子點所產生的單光子源是未來量子計算及量子通訊的基石,我們成長低密度量子點藉此隔離出單一量子點,並得到其所發出的單光子源,利用Hanbury Brown and Twiss量測方式,可以得到連續兩個有效的入射光子時間差的機率分佈圖,觀察到單光子源的反集束(antibunching)現象,發表台灣第一個光激發單光子光源。然而,用傳統的磊晶成長模式藉由應力方式自然形成量子點,量子點的形成呈現隨機分佈,無法正確的預測量子點的產生位置,對於單光子源實際應用將是很嚴重的考驗,於此,我們利用曝光及蝕刻等黃光製程,並藉由特殊磊晶成長砷化鎵緩衝層的方式形成奈米平台(40-50 nm),利用選擇性成長技術縮減量子點成長的平面,在六角錐頂端的奈米平面定位單一量子點,藉此控制量子點形成的位置,也成功地觀察到單光子源的反集束現象,是第一個在(100)砷化鎵基板上控制單一顆量子點並實現單光子源的團隊。
摘要(英) This thesis is aimed to demonstrate advanced semiconductor light sources from InGaAs/GaAs quantum dots (QDs). The research of self-assembled QDs formed by Stranski-Krastanov growth mode has been of great interest in recent years. The QDs of this kind exhibit very good optical quality so that several QD based optical devices have been demonstrated. Base on this approach, the content of this thesis is divided into two main topics, including typical QD light sources emitted from QD ensemble and non-classical light sources from a single QD.
The thesis discusses typical QD light sources for the first topic. Since QD laser offers several advantages, the pursuit of 1.3 and 1.55 μm QD lasers for last-mile access-point optical fiber networks becomes a focused area of research. However, the typical emission wavelength of InAs QDs in GaAs matrix is often limited to 1.2 mm, an overgrown InGaAs layer on the InAs quantum dots is always used to extend the lasing wavelength to 1.3 mm. However, further extension of the emission wavelength to 1.55 mm has been difficult due to the unknown problem. In this work, we figured out the main problems and then appropriately solved them. We demonstrated that the emission wavelength of In(Ga)As quantum dot heterostructures on GaAs can be tuned from 1.1 mm to as long as 1.55 mm by a 9-nm-thick InGaAs overgrown layer with various indium compositions. Besides, 1.47 mm QD light-emitting diodes were also demonstrated.
However, the luminescence efficiency of the QDs still decreases significantly as the emission wavelength is extended to 1.5 mm. It is found that the loss of holes from QDs to their proximity via the high indium composition of InGaAs overgrown layer is one of the main reasons. We further enhance the optical efficiency of InAs QDs on GaAs emitting at the wavelength of 1.5 mm by inserting a carrier blocking layer, into the GaAs capping matrix. The method can improve the photoluminescence intensity of QD by five times at 1.5 mm.
In the second part of the thesis, non-classical QD light source is the major topic. Single photon source, which is one of so-called non-classical light sources, has been intensively pursued for quantum cryptography and quantum computing in recent years. Here, we report the preparation of low density self-assembled InGaAs on GaAs for single photon sources. Through using a set of optimized growth parameters, including the arsine partial pressure, total coverage of quantum dots, and growth temperature, high optical quality quantum dots with density as low as 5 × 106 cm−2 have been obtained. The spectral lines associated with the exciton, biexciton, multi-exciton, and charged exciton have been resolved and identified. Single photon emission from the single QD is verified by its anti-bunching behavior observed by a Hanbury-Brown and Twiss interferometer.
However, one of the major challenges that need to be overcome is the deterministic control over QD position as self-assembled QDs are of random distribution nature. Understanding and manipulation of QDs thus becomes an important and interesting subject for scientists. This work also demonstrates a single photon emitter based on a spatially-controlled QD grown on a self-constructed (100) nano-plane. A single QD was selectively grown on the nano-plane of a multi-faceted structure. Another advantage of this method is to eliminate other QD emissions because the structure is free of QDs, except for the QD on the nano-plane. Photon correlation measurements show that the single quantum dot can successfully emit antibunched photons.
關鍵字(中) ★ 單光子源
★ 量子點
★ 有機金屬氣相磊晶成長
關鍵字(英) ★ single photon
★ Quantum dot
★ MOCVD
論文目次 Abstract i
Contents viii
List of Figures and Captions xxi
Chapter 1 Introduction1
1.1 Overview 1
1.1.1 Light emitters from self-assembled quantum dots ensemble 3
1.1.2 Light emitters from a single self-assembled quantum dots 5
1.2 Outline8
Chapter 2 Self-assembled In(Ga)As Quantum Dots Grown by Metal Organic Chemical Vapor Deposition 9
2.1 Introduction 9
2.1.1 Why MOCVD?9
2.1.2 Metal organic chemical vapor deposition 10
2.2 Growth of self-assembled quantum dots 11
2.2.1 Effects of In(Ga)As coverage 11
2.2.2 Effects of growth temperature13
2.2.3 Effects of growth interruption15
2.2.4 Effects of overgrowth 17
2.3 Optical properties of self-assembled quantum dots 19
2.3.1 Spectroscopy of quantum dot ensembles 19
2.3.2 Spectroscopy of a single quantum dot 21
Chapter 3 1.5 mm Quantum Dot Light Sources22
3.1 Introduction 22
3.2 Effects of precursor for the growth of the cap layers on quantum dots24
3.3 1.47 mm light emitting diodes 30
3.4 Enhancing luminescence efficiency of InAs quantum dots at 1.5 μm using a carrier blocking layer31
3.5 Effects of carrier blocking layer on optical properties of InAs/GaAsquantum dots emitting at 1.5 mm37
Chapter 4 Optically Excited Single Photon Emissions froman InGaAs Quantum Dot 43
4.1 Introduction 43
4.1.1Motivation 43
4.1.2Micro-photoluminescence system45
4.2 Growth of low density InGaAs quantum dots46
4.3 Investigation of optical properties in single quantum dot System48
Chapter 5 Spatially Controlled Single InGaAs Quantum Dotsfor Single Photon Sources 54
5.1 Introduction 54
5.2 Selective growth of InAs quantum dots on patterned GaAs55
5.2.1Spatially controlled linear quantum dot array 55
5.2.2Spatially controlled a single quantum dot 61
5.3 Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane65
Chapter 6 Conclusions and Future work 69
6.1 Conclusions69
6.1.1Light emitters from self-assembled QDs ensemble69
6.1.2Light emitters from a single self-assembled QD70
6.2 Future work 71
6.2.1InAs/GaAs QD lasers emitting at 1.5 mm range 71
6.2.2High-efficient electrically driven single photon emitters 71
6.2.3Photonic crystal nanocavity lasers74
Reference78
Publication list 86
參考文獻 [1] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 39 (1982).
[2] N.N. Ledentsov, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, M.V. Maximov, I.G. Tabatadze, P.S. Kop'ev, Fiz. Tekhn. Poluprov. 28, 1484 (1994), Semiconductors 28, 832 (1994).
[3] R. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 78, 1207 (2001).
[4] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, Electron. Lett. 35, 1163 (1999).
[5] P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, Appl. Phys. Lett. 77, 262 (2001).
[6] Ch. Ribbat, R. L. Sellin, I. Kaiander, F. Hopfer, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and M. V. Maximov, Appl. Phys. Lett. 82, 952 (2003).
[7] P. Bhattacharya and S. Ghosh, Appl. Phys. Lett. 80, 3482 (2002).
[8] M. V. Maksimov, N. Yu. Gordeev, S. V. Zatsev, P. S. Kop'ev, I. V. Kochnev, N. N. Ledentsov, A. V. Lunev, S. S. Ruvimov, A. V. Sakharov, A. F. Tsatsul'nikov, Yu. M. Shernyakov, Zh. I. Alferov, and D. Bimberg, Semiconductors 31, 124 (1997).
[9] N.-T. Yeh, J.-M. Lee, T.-E. Nee, J.-I. Chyi, IEEE Photon. Tech. Lett. 12, 1123 (2000).
[10] O. B. Shchekin and D. G. Deppe, Appl. Phys. Lett. 80, 3277 (2002).
[11] N. N. Ledentsov, M. Grundmann, F. Heinrichsdorff, D. Bimberg, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Zh. I. Alferov, and J. A. Lott, IEEE J. Select. Topics Quantum Electron., 6, 439 (2000).
[12] H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, IEEE Photon. Technol. Lett. 17, 6, 1041 (2005).
[13] S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, IEEE Photonics Technol. Lett. 16, 377 (2004).
[14] Z. Mi, P. Bhattacharya, and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).
[15] A. Martinez, A. Lemaitre, K. Merghem, L. Ferlazzo, C. Dupuis, A. Ramdane, J.-G. Provost, B. Dagens, O. Le Gouezigou and O. Gauthier-Lafaye, Appl. Phys. Lett. 86, 21115 (2005).
[16] S. Fathpour, Z. Mi, S. Chakrabarti, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, Appl. Phys. Lett. 85, 5164 (2004).
[17] A. R. Kovsh, N. A. Maleev, A. E. Zhukov; S. S. Mikhrin, A. R. Vasilev, Yu. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. Ustinov, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, Electron. Lett. 38, 19, 1104 (2002).
[18] C. H. Bennett and G. Brassard, Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, p. 175 (1984).
[19] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Cryptology 5, 3 (1992).
[20] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002),
[21] id Quantique SA, http://www.idquantique.com
[22] H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
[23] F. Diedrich, H. Walther, Phys. Rev. Lett. 58, 203 (1987).
[24] Th. BaschZe, W. E. Moerner, M. Orrit, H. Talon, Phys. Rev. Lett. 69, 1516 (1992).
[25] C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000).
[26] R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, Opt. Lett. 25, 1294 (2000).
[27] J. Kim, O. Benson, H. Kan and Y. Yamamoto, Nature 397, 500 (1999).
[28] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
[29] C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).
[30] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).
[31] M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson and D. A. Ritchie, Appl. Phys. Lett. 86. 201111 (2005).
[32] M. H. Baier, E. Pelucchi, E. Kapon S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 84. 648 (2004).
[33] C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84. 3762 (1996).
[34] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter and A. Zeilinger, Nature Phys. Article 1 (2007).
[35] Gerald B. Stringfellow, ‘‘Organometallic Vapor-Phase Epitaxy: Theory and Practice’’ (1999).
[36] K. Mukai, N. Ohtsuka, M. Sugawara and S. Yamazaki, Jpn. J. Appl. Phys. 33, L1710 (1994).
[37] J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 65, 1421 (1994).
[38] F. Heinrichsdorff, A. Krost, M. Grundmann, D. Bimberg, A. Kosogov and P. Werner, Appl. Phys. Lett. 68, 3284 (1996).
[39] N. N. Ledentsov, J. Böhrer, D. Bimberg, I. V. Kochnev, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, A. O. Kosogov, S. S. Ruvimov, P. Werner, and U. Gösele, Appl. Phys. Lett. 69, 1095 (1996).
[40] F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov and P. Werner, Appl. Phys. Lett. 71, 22 (1997).
[41] M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, Appl. Phys. Lett. 75, 2347 (1999).
[42] G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, Appl. Phys. Lett. 84, 2058 (2004).
[43] S. Ganapathy, X. Q. Zhang, I. Suemune, K. Uesugi, H. Kumano, B. J. Kim, and T.-Y. Seong, Appl. Phys. Lett. 82, 4477 (2003).
[44] M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, Appl. Phys. Lett. 82, 2646 (2003).
[45] N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Yu. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, Electron. Lett. 39, 1126 (2003).
[46] K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, Appl. Phys. Lett. 74, 1111 (1999).
[47] N. T. Yeh, T. E. Nee, J.-I. Chyi, C. C. Huang, and T. M. Hsu, Appl. Phys. Lett. 76, 1567 (2000).
[48] M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. S. Sizov, Y. M. Shernyakov, I. N. Kaiander, A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, V. M. Ustinov, Z. I. Alferov, R. Heitz, V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Y. G. Musikhin, and W. Neumann, Phys. Rev. B 62, 16 671 (2000).
[49] F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, Phys. Rev. B 64, 085305 (2000).
[50] W. H. Chang, H. Y. Chen, H. S. Chang, T. M. Hsu, T. P. Hsieh, J.-I. Chyi, and N. T. Yeh, Appl. Phys. Lett. 86, 131917 (2005).
[51] J. Tatebayashi, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 78, 3469 (2001).
[52] H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, Appl. Phys. Lett. 85, 704 (2004).
[53] W. S. Liu and J.-I. Chyi, Proceedings of the 2004 International Conference on Molecular-Beam Epitaxy, 22–27 August 2004, Edinburgh.
[54] W.-S. Liu, H. Chang, Y.-S. Liu, and J.-I. Chyi, J. Appl. Phys. 99, 114514 (2006).
[55] H. Ito and K. Kurishima, J. Cryst. Growth 165, 215 (1996).
[56] S. K. Shastry, S. Zemon, D. G. Kenneson, and G. Lambert, Appl. Phys. Lett. 52, 150 (1988).
[57] T. P. Hsieh, N. T. Yeh, P. C. Chiu, W. H. Chang, T. M. Hsu, W. J. Ho, and J.-I. Chyi, Appl. Phys. Lett. 87, 151903 (2005).
[58] R. Colombelli, V. Piazza, A. Badolato, M. Lazzarino and F. Beltram, Appl. Phys. Lett. 76, 1146 (2000)
[59] J.-F. Chen, N.-C. Chen, J.-S. Wang, and Y. F. Chen, IEEE Transactions on Electron Devices, 48, 204 (2001).
[60] J.-Y. Marzin, M. N. Charasse, B. Sermage, Phys. Rev. B 31, 8298 (1985).
[61] W. H. Chang, T. M. Hsu, C. C. Huang, S. L. Hsu, C. Y. Lai, N. T. Yeh, and J.-I. Chyi, Phys. Rev. B 62, 6959 (2000).
[62] W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J.-I. Chyi, Phys. Rev. B 66, 195337 (2002).
[63] J. L. Movilla, J. I. Climente, and J. Planelles, J. Appl. Phys. 94, 4515 (2003).
[64] M. Arzberger, U. Käsberg, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 3968 (2002).
[65] W.-S. Liu and J.-I. Chyi, J. Appl. Phys. 97, 024312 (2005).
[66] H. Y. Liu and M. Hopkinson, Appl. Phys. Lett. 82, 3644 (2003).
[67] Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, and A. Larsson, Appl. Phys. Lett. 81, 1621 (2002).
[68] E. C. Le Ru, P. D. Siverns, and R. Murray, Appl. Phys. Lett. 77, 2446 (2000).
[69] G. Saint-Girons and I. Sagnes, J. Appl. Phys. 91, 10115 (2002).
[70] J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, Phys. Rev. Lett. 73, 716 (1994)
[71] M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, Phys. Rev. Lett. 74, 4043 (1995)
[72] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Science, 273, 87, (1996).
[73] D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, Appl. Phys. Lett. 69, 749 (1996).
[74] V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. Pistol, L. Samuelson and G. Bjork, Appl. Phys. Lett. 78. 2476 (2001).
[75] A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamog˘ lu, Lidong Zhang, E. Hu, W. V. Schoenfeld and P. M. Petroff, Appl. Phys. Lett. 78. 3932 (2001).
[76] J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, Appl. Phys. Lett. 82. 3596 (2003).
[77] R. Leon, C. Lobo, J. Zou, T. Romeo and D. J. H. Cockayne, Phys. Rev. Lett. 81, 2486 (1998)
[78] E. M. Purcell, Phys. Rev. 69, 681 (1946).
[79] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, Appl. Phys. Lett. 79, 2865 (2001).
[80] M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, Appl. Phys. Lett. 86, 3903 (2001).
[81] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 013904 (2005).
[82] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[83] A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Science 308, 1158 (2005).
[84] C.-K. Hahn, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 76, 3947 (2000).
[85] R. Tsui, R. Zhang, K. Shiralagi, D. Convey, and H. Goronkin, Appl. Phys. Lett. 71, 3254 (1997).
[86] R. Zhang, R. Tsui, K. Shiralagi, D. Convey, and H. Goronkin, Appl. Phys. Lett. 73, 505 (1998).
[87] R. Zhang, R. Tsui, K. Shiralagi, and H. Goronkin, Jpn. J. Appl. Phys., Part 1 38, 455 (1999).
[88] J. Tatebayashi, M. Nishioka, T. Someya, and Y. Arakawa, Appl. Phys. Lett. 77, 3382 (2000).
[89] C. K. Hahn, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 76, 3947 (2000).
[90] B. C. Lee, S. D. Lin, C. P. Lee, H. M. Lee, J. C. Wu, and K. W. Sun, Appl. Phys. Lett. 80, 326 (2002).
[91] H. J. Kim, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 81, 5147 (2003).
[92] A. Konkar, A. Madhukar, and P. Chen, Appl. Phys. Lett. 72, 220 (1998).
[93] M. Lopez, T. Ishikawa, and Y. Nomura, Jpn. J. Appl. Phys., Part 1 32, 1051 (1993).
[94] T.-P. Hsieh, H.-S. Chang, W.-Y. Chen, W.-H. Chang, T. M. Hsu, N.-T. Yeh, W.-J. Ho, P.-C. Chiu, and J.-I. Chyi, Nanotechnology 17, 512 (2006).
[95] T. I. Kamins and R. S. Williams, Appl. Phys. Lett. 71, 1201 (1997).
[96] T.-P. Hsieh, P.-C. Chiu, Y.-C. Liu, N.-T. Yeh, W.-C. Ho, and J.-I. Chyi, J. Vac. Sci. Technol. B 23, 262 (2005).
[97] W.-H. Chang, H.-S. Chang, W.-Y. Chen, T. M. Hsu, T.-P. Hsieh, J.-I. Chyi, and N.-T. Yeh, Phys. Rev. B 72, 233302 (2005).
[98] A. Kiraz, S. Faith, C. Becher, B. Gayral, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imainoglu, Phys. Rev. B 65, 161303(R) (2002).
[99] J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, Appl. Phys. Lett. 90, 213105 (2007)
[100] K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 73, 3375, (1994).
[101] J. McKeever, A. Boca, A. D. Boozer, J. R. Buck and H. J. Kimble, Science 425, 268 (2003).
[102] S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Phys. Rev. Lett. 96, 127404, (2006).
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2007-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明