博碩士論文 90521033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.117.142.70
姓名 王則閔(Che-ming Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 InGaP/GaAs HBT線性度改善與InP DHBT製作與特性分析
(Linearity Improvement of InGaP/GaAs HBTs and Characterization of InP-based Type-I/II HBTs)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在1957年異質接面雙載子電晶體設計概念在貝爾實驗室被提出,利用異質接面能帶差來提高雙載子電晶體的射極注入效應;在1980年代隨著MOCVD與MBE長晶技術逐漸成熟,砷化鎵與磷化銦異質接面雙載子電晶體成功製作與應用。近年來隨著無線通訊快速的發展,異質接面雙載子電晶體也被廣泛應用在功率放大器。但電晶體的非線性效應影響到電路輸出特性,四個主要的異質接面雙載子電晶體的非線性因子在本文中被討論,同時也分析大訊號輸入時,非線性特性的表現。另外在磷化銦異質接面雙載子電晶體研究方面,因磷化銦異質接面雙載子電晶體是目前世界最快速的電晶體,將其兩種形態(type-I 與type-II)的材料特性與能帶圖分析與比較。藉由了解目前磷化銦異質接面雙載子電晶體的截止頻率相對最大震盪頻率、崩潰電壓、集極厚度與集極電流密度的關係,可以對高速電晶體結構設計上有進一步的幫助。
在第二章中,提出非均勻的集極摻雜來改善元件線性度與高頻特性,此設計是利用一薄層高摻雜濃度至於均勻的集極區域中,薄層高摻雜的濃度與厚度由模擬來求得最佳化,並藉由薄層高摻雜層來侷限集極的空乏厚度,因而達到有效改善非線性基極集極電容改變量,從模擬可觀察出非線性基極集極電容改變率由1.6降低至1.1,此外非均勻的集極摻雜設計也同時延遲元件Kirk 效應,提高最大輸出電流2倍,同時有效提高元件的高頻特性、功率輸出與改善線性度特性。
在第三章中,利用上一章所設計的非均勻集極摻雜製作砷化鎵異質接面雙載子電晶體並量測與分析。在直流特性上,因為相同的射極與基極決定了雙載子電晶體的直流特性,所以在集極中加入一薄層高摻雜濃度並不影響直流特性,且非均勻集極摻雜電晶體的操作電流密度比傳統均勻摻雜設計高2倍。在高頻截止頻率特性因延遲Kirk effect而有明顯的改善 12 GHz,並保持相似的最大震盪頻率。在電容量測方面,包含了反偏下電容的變化與不同電流下電容改變,非均勻的集極摻雜元件有效控制空乏厚度減少非線性電容的產生,而在電流操作下,因為Kirk effect改善而展延了完全空乏的基極集極電容區域,因而達到改善線性度的要求。在1.8 GHz功率與線性度量測上,最高飽和功率輸出藉由延遲Kirk effect提升最大電流密度而改善2.2 dBm,此外線性度量測發現OIP3有10 dB的改善。此非均勻的集極摻雜設計在異質接面雙載子電晶體不但可以改善線性度特性,同時也能增加最大輸出功率。
在第四章中,主要研究高速次微米磷化銦/砷化鎵銦異質接面雙載子電晶體製作技術。次微米元件是利用電子束顯影技術製作,有別於一邊傳統利用深紫外光曝光製作。單根射極0.6 × 12 μm2的磷化銦/砷化鎵銦元件被製作與量測,在直流特性上,集極電流密度666 kA/cm2時有最大的電流增益28.4,崩潰電壓大於5 V。在高頻特性上,最高截止頻率與最大震盪頻率分別為230 GHz與135 GHz。在29 GHz的功率量測上,線性增益為7.6 dB,最大功率輸出為14.3 dBm,最大功率效益為34%,本實驗磷化銦/砷化鎵銦元件在29 GHz操作頻率下,是目前單位面積下可輸出最大功率的元件。
在最後一章中,則利用鋁化鎵銦-磷化銦射極來改善傳統type-II的磷化銦/砷化鎵銻電晶體在低電流下低增益現象,此設計可有效降低電子堆積在射極基極接面,增加電子通過並降低表面復合電流。直流特性顯示此結構在低電流時擁有高增益,在電流密度1.78
摘要(英) Heterojunction Bipolar Transistors (HBTs) proposed to improve the emitter efficiency by base-emitter (BE) heterojunction in 1958s. The GaAs-based and InP-based HBTs were implemented as the material growth techniques of MOCVD and MBE became mature in 1980s. In recent, the HBTs are widly applicated in the power amplifier of wireless communication system. The nonlinear characteristic of HBTs is an important point that affects power performance of circuit design. The four major sources of HBTs nonlinearity and the large-signal swing related nonlinear factors are discussed. InP-based HBTs achieved record high speed results and are currently the most promising technologies for achieving Terahertz (THz) operation. The energy band and relation material of the type-I and type-II of InP-based HBTs are studied. And the correlation between cutoff frequency (fT), maximum oscillation frequency (fMAX), collector thickness, breakdown voltage, collector current density is compared and analyzed.
In the chapter 2, a non-uniform collector doping design is studied by employing a thin high-doping layer inside the low doping collector. The collector doping design limits collector depletion and electric field at the thin-high doping layer. The ratio of maximum to minimum values of CBC with uniform and non-uniform collector doping are 1.6 and 1.1. This collector design results in the re-distribution of the electric fields in the collector to delay the onset of Kirk effect and thus improve the current handling capability, fT, output power, and linearity characteristics.
In the chapter 3, a non-uniform collector doping design of GaAs HBTs by employing a thin high-doping layer inside the low doping collector are fabricated and analyzed. The identical emitter and base epi-layer structures shows the similar results in dc characteristics except the negligible reduction in breakdown voltage. The fT of non-uniform collector increases 12 GHz compared to convention HBT (HBT-A) by delay onset of Kirk effect. The power performance and linearity characteristic show the improvement of 2.2 dB in saturation output power and 10 dB in OIP3 at frequency 1.8 GHz. The HBTs (HBT-B and HBT-C) with a thin high-doping layer in the collector demonstrate the improved cutoff frequency, linearity and output power characteristics compared with a conventional HBT.
In the chapter 4, a submicrometer 0.6×12 μm2 InP/InGaAs DHBTs by E-bean lithography is fabricated and measured. The current gain is 28.4 at JC = 666 kA/cm and the common-emitter breakdown voltage exceeds 5 V. The fT and fMAX of the InP/InGaAs DHBT are 230 GHz and 135 GHz, respectively. The saturation output power of 14.3 dBm and the maximum output power density of 3.7 mW/µm2 are measured at Ka-band with load-pull system matching to maximize the output power. This is the highest output power density obtained with submicrometer DHBTs at 29 GHz every reported for on-wafer load-pull measurement using InP/InGaAs DHBT technology.
Finally, in the chapter 5, the InAlAs-InP composite emitter could effectively reduce electron pile-up at the InP/GaAsSb base-emitter junction and improve current gain. The current gain (
關鍵字(中) ★ 線性度
★ 磷化銦
★ 砷化鎵
★ 異質接面雙載子電晶體
關鍵字(英) ★ type-II
★ type-I
★ collector
★ linearity
★ InP
★ GaAs
★ HBT
論文目次 摘要 i
Abstract iii
誌謝 v
Table of contents vi
List of tables viii
List of figures ix
Chapter 1 Introduction 1
1-1 Overview of GaAs and InP-based HBTs 1
1-2 Nonlinear characteristics of HBTs 4
1-3 Brief InP-based HBTs 7
1-4 Dissertation Organization 11
Chapter 2 Collector Design in GaAs HBT to improve linearity 12
2-1 Introduction 12
2-2 Device Structures and Simulation Parameters 13
2-3 Breakdown Characteristics of Non-uniform Collector 16
2-4. Base Collector Capacitance and Linearity 18
2-5. Kirk Effect and Output Power 24
Chapter 3 Characterization of InGaP/GaAs HBT by Non-uniform Collector Doping Design 30
3-1 Introduction 30
3-2 Device Fabrication 30
3-3 Dc and Ac characteristics 33
3-4 Base-Collector Capacitance Variation 39
3-5 Output Power Characteristics 43
3-6 Third-order Intermodulation Performance 45
3-7 Summary 49
Chapter 4 Ka-band Performance of InP/InGaAs/InP Type-I DHBTs 50
4-1 Introduction 50
4-2 Epitaxial Structure and Fabrication 51
4-3 DC and RF characteristics of InP/InGaAs DHBTs 56
4-4 Power Performance of InP/InCaAs DHBTs 59
Chapter 5 Characteristics of InAlAs-InP/GaAsSb/InP Type-II DHBTs 63
5-1 Introduction 63
5-2 Measured dc and Ac characteristics 64
5-2-2 DC and AC characteristic 68
5-3 Analysis of GaAsSb DHBTs with Different Emitter Material 74
5-4 Temperature dependent study of InAlAs-InP/GaAsSb/InP DHBT 82
5-5 Summary 92
Chapter 6 Conclusion and Future Work 93
6-1 Conclusion 93
6-2 Future Work 95
Reference 96
Appendix A 103
Appendix B 108
PUBLICTION LIST 115
參考文獻 [1] K. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol. 71, pp. 230, 1948.
[2] W. Shockley, “The theory of p-n junction in semiconductor and p-n junction transistor”, Bell syst. Tech. J. vol. 28, pp. 435, 1949.
[3] H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors,” proc. IRE, vol. 45, pp.1535, 1957.
[4] H. T. Yuan, W. V. McLevige, and H. D. Shih, “ GaAs Bipolar Digital Integrated Circuit”, in N. G. Einspruch and W. R. Wisseman (eds.), VLSI Electrics icrostructure Science, vol. 11, pp. 173-213, Academic Press, Orlando, 1985.
[5] R. Nottenburg, J. C. Bischoff, M. B. Panish, and H. Temkin, “High-speed InGaAs(P)/InP double-heterostructure bipolar transistors”, IEEE Electron Device Lett., vol. 8, pp. 282-284, 1987
[6] W. Snodgrass, W. Hafez, N. Harff, and M. Feng, "Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25°C Increasing to fT = 845 GHz at -55°C", IEEE Indium Phosphide and Related Materials, pp. 1-4, 2006.
[7] F. Schwierz, and J. J. Liou, “RF transistors: Recent developments and roadmap toward terahertz applications,” Solid-State Electronics, vol. 51, pp. 1079-1091, 2007.
[8] Z. Griffith, E. Lind, M. J.W. Rodwell, X. M. Fangt, D. Loubychevt, Y. Wut, J. M. Fastenaut, and A. W.K. Liut, “Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT,” IEEE Indium Phosphide and Related Materials, pp. 403-406, 2007.
[9] S. Reed, Y. Wang, F. Huin, and S. Toutain, “HBT Power Amplifier With Dynamic Base Biasing for 3G Handset Applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 380-382, Aug. 2004.
[10] T. Iwai, K. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, “42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular Phone Systems”, IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 2567-2572, Dec. 2000.
[11] J.H. Kim, J.H. Kim, Y.S. Noh, and C.S. Park, “ A Low Quiescent Current 3.3 V operation Linear MMIC Power Amplifier for 5 GHz WLNA Application”, IEEE Microwave Symp., pp. 867-870, 2003.
[12] K. Nellis and P. J. Zampardi, “A Comparison of Linear Handset Power Amplifiers in Different Bipolar Technologies,” IEEE J. Solid-State Circuits, vol. 39, pp.1746-1754, Oct. 2004.
[13] S.M. SZE, “High-Speed Semiconductor Devices”, Wiley-Interscience, 1990.
[14] D. Caffin, A.-M. Duchenois, F. Heliot, C. Besombes, J.-L. Benchimol, and P. Launay, “Base-Collector Leakage Currents in InP/InGaAs Double Heterojunction Bipolar Transistorss”, IEEE Trans. Electron Devices, vol. 44, pp. 930-936, June 1997.
[15] S. Narayanan, “Transistor distortion analyzed using Velterra series representation,” Bell syst. Tech. J., pp. 991-1024, May-June, 1967
[16] S.A. Maas, B.L. Nelson, and D.L. Tait, “Intermodulation in Heterojunction Bipolar Transistors”, IEEE Trans. Microwave Theory and Tech., vol. 40, pp. 442-448, Mar. 1992.
[17] A. Samelis and D. Pavlidis, “Mechanisms determining third-order intermodulation distortion in AlGaAs/GaAs HBT’s”, IEEE Trans. Microwave Theory and Tech., vol. 40, pp. 2374-2380, Dec. 1992.
[18] B. Li and S. Prasad, “Intermodulation Analysis of the Collector-Up InGaAs/InAlAs/InP HBT Using Volterra Series”, IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 1321-1323, Sep. 1998.
[19] W. Kim, S. Kang, K. Lee, M. Chung, J. Kang, and B. Kim, “Analysis of Nonlinear Behavior of Power HBTs”, IEEE Trans. Microwave Theory and Tech., vol. 50, pp. 1714-1722, July 2002.
[20] Y.J. Jeon, H.W. Kim, M.S. Kim, Y.S.Kim, J.W. Kim, J.Y. Choi, D.C. Jung, and J.H. Shin, “ Improved HBT Linearity With a “Post-Distortion”-Type Collector Linearizer”, IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 102-104, Mar. 2003.
[21] David M. Pozar, “Microwave Engineering”, Wiley, 2005.
[22] W. Hafez, W. Snodgrass, and M. Feng, “12.5 nm base psedomorphic heterojunction bipolar transistor achieving fT=710GHz and fMAX=340 GHz,” Appl. Phys. Lett., 87, 2005.
[23] M. Feng, W. Hafez, J. W. Lai, “Over 500GHz InP Heterojunction Bipolar Transistors,” IEEE Indium Phosphide and Related Materials, pp. 653-658, 2004.
[24] D. Yu, K. Choi, K. Lee, B. Kim, H. Zhu, K. Vargason, J. M. Kuo, and Y. C. Kao, “ Realization of High -Speed InP SHBTs using Novel but Simple Techniques for Parasitic Reduction”, IEEE Indium Phosphide and Related Materials, pp. 753-756, 2004.
[25] W. Hafez, J. W. Lai, and M. Feng, “InP/InGaAs SHBT with 75nm collector and fT >500GHz,” IEE Electronics Lett., vol.39, pp. 1475-1476, Oct. 2003.
[26] W. Hafez, J. W. Lai, and M. Feng, “Record fT + fMAX performance of InP/InGaAs single heterojunction bipolar transistors,” IEE Electronics Lett., vol.39, pp. 811-813, May 2003.
[27] J. W. Lai,W. Hafez, Y. J. Chuang, D. Caruth, and M. Feng, " Submicron scaling InP/InGaAs single heterojunction bipolar transistor technology with fT >400GHz for 100GHz applications," IEEE Gallium Arsenide Integrated Circuit Symp., pp. 215-218, 2003.
[28] J. W. Lai,W. Hafez, and M. Feng, " Vertical Scaling of type I InP HBT with fT >500GHz," International Journal of High Speed Electronics and Systems, vol. 14, , pp. 625-631, 2004.
[29] D. Yu, K. Choi, K. Lee, B. Kim, H. Zhu, K. Vargason, J. M. Kuo, and Y. C. Kao, " Ultra High-Speed 0.25um Emitter InP-InGaAs SHBT with fMAX of 687 GHz,” IEEE Int.Electron Devices Meet., pp. 557-560, 2004.
[30] K. Lee, D. Yu, M. Chung, J. Kang, and B. Kim, "New Collector Undercut Technique Using a SiN Sidewall for Low Base Contact Resistance in InP/InGaAs SHBTs," IEEE Trans. Electron Devices, vol. 44, pp. 1079 -1082, June 2002.
[31] D. Yu; K. Lee; B. Kim; D. Ontiveros, K. Vargason, J.M. Kuo, and Y.C. Kao, “Ultra high-speed InP-InGaAs SHBTs with fMAX of 478 GHz,” IEEE Trans. Electron Devices, vol. 24, pp. 384-386, June, 2003.
[32] W. Hafez, J.W. Lai, and M. Feng, "Low-Power High-Speed Operation of Submicron InP–InGaAs SHBTs at 1 mA," IEEE Electron Device Lett., vol. 24, pp. 427-429, July 2003.
[33] M. Ida, K. Kurishima, and N. Watanabe, "Over 300 GHz fT and fMAX InP/InGaAs Double Heterojunction Bipolar Transistors With a Thin Pseudomorphic Base", IEEE Electron Device Lett., vol. 23, pp. 694-696, Dec. 2002.
[34] T.Hussain, Y. Royter, D. Hitko, M. Montes, M. Madhav, I. Milosavljevic, R. Rajavel, S. Thomas, M. Antcliffe, A. Arthur, Y. Boegeman, M. Sokolich, J. Li, P. Asbeck, "First demonstration of 0.25μm-width emitter InP-DHBTs with > 400 GHz fT and > 400 GHz fMAX," IEEE Int.Electron Devices Meet., pp. 553-556, 2004.
[35] Z. Griffith, M. Rodwell, M. Dahlstrom, X.M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau, W.K. Liu, "In0.53Ga0.47As/InP Type-I DHBTs w/ 100 nm Collector and 491 GHz fT , 415 GHz fMAX," IEEE Indium Phosphide and Related Materials, pp. 343-346, 2005.
[36] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, "Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors", IEEE Trans. Electron Devices, vol. 41, pp. 1319-1326, Aug. 1994.
[37] M. Dahlstrom, X.-M. Fang, D. Lubyshev, M. Urteaga, S. Krishnan, N. Parthasarathy, Y.M. Kim, Y. Wu, J.M. Fastenau, W.K. Liu, M.J.W. Rodwell, “Wideband DHBTs using a graded carbon-doped InGaAs base,” IEEE Electron Device Lett., vol. 24, pp. 433-435, July 2003.
[38] M. Kahn, S. Blayac, M. Riet, P. Berdaguer, V. Dhalluin, F. Alexandre, F. Aniel, and J. Godin, "Effect of base thickness reduction on high speed characteristics and base resistance of InGaAs/InP heterojunction bipolar transistor," IEEE Indium Phosphide and Related Materials, pp. 134-137, 2003.
[39] J.C. Li, M. Chen, D.A. Hitko, C.H. Fields, S. Binqiang, R. Rajavel, P.M. Asbeck, M. Sokolich, "A submicrometer 252 GHz fT and 283 GHz fMAX InP DHBT with reduced CBC using selectively implanted buried subcollector (SIBS)," , IEEE Electron Device Lett., vol. 26, pp. 136-138, Mar. 2005.
[40] Z. Griffith,M. Dahlstrom, M.J.W. Rodwell, X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau, and W.K. Liu, "InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz fT and 505-GHz fMAX," IEEE Electron Device Lett., vol. 26, pp. 11-13, Jan. 2005.
[41] D. Sawdai, K. Yang, S.-H.Hsu, D.Pavlidis, and G.I. Haddad, " Power performance of InP-Base Single and Double Heterojunction Bipolar Transistors", IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 1449-1456, Aug. 1999.
[42] A. Fujihara, Y. Ikenaga, H. Takahashi, M. Kawanaka, and S. Tanaka, “High-speed InP/InGaAs DHBTs with ballistic collector launcher structure,” IEEE Int. Electron Devices Meet., pp. 35.3.1–35.3.4., 2001.
[43] M. Ida, K. Kurishima, N. Watanabe, and T. Enoki, “InP/InGaAs DHBTs with 341-GHz fT at high current density of over 800 kA/cm2,” IEEE Int. Electron Devices Meet., pp. 35.4.1-35.4.4, 2001.
[44] M. Kahn, S. Blayac, M. Riet, P. Berdaguer, V. Dhalluin, F. Alexandre,and J. Godin, “Measurement of base and collector transit times in thinbaseInGaAs/InP HBT,” IEEE Electron Device Lett., vol. 24, pp.430-432, May 2003.
[45] B.-R. Wu, W. Snodgrass, M. Feng and K.Y. Cheng, "High-speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers ", Crystal Growth J., vol. 301-302, pp. 1005-1008, April 2007.
[46] Zach Griffith and Mark J.W. Rodwell, Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy W.K. Liu, "InGaAs/InP DHBTs with a 75nm Collector, 20nm base Demonstrating 544 GHz fT, BVCEO = 3.2V, and BVCBO = 3.4V,” IEEE Indium Phosphide and Related Materials, pp. 96-99, 2006.
[47] Yi, S.S.; Chung, S.J.; Rohdin, H.; Bour, M.H.D.; Moll, N.; Chamberlin, D.R.; Amano, J.; "Growth and device performance of InP/GaAsSb HBTs" IEEE Indium Phosphide and Related Materials,pp.380-384, 2003.
[48] M.W. Dvorak, N. Matine, S.P. Watkins, and C.R. Bolognesi, "MOCVD-grown 175 GHz InP-GaAsxSb1-x-InP DHBTs with high current gains using strained and heavily C-doped base layers", IEEE Device Research Conference, pp.143-144, 2000.
[49] X. Zhu, D. Pavlidis, and G. Zhao, “First Power Demonstration of InP/GaAsSb/InP Double HBTs,” IEEE Indium Phosphide and Related Materials, pp. 757-760, 2004.
[50] W. Snodgrass, B.-R. Wu, W. Hafez, K.-Y. Cheng, and M. Feng, “Graded Base Type-II InP/GaAsSb DHBT With fT = 475 GHz,” IEEE Electron Device Lett., vol. 27, pp.84–86, Feb. 2006.
[51] H. G. Liu, S. P.Watkins, and C. R. Bolognesi, “15-nm Base Type-II InP/GaAsSb/InP DHBTs With fT = 384 GHz and a 6V BVCEO,” IEEE Trans. Electron Devices, vol. 53, pp. 559-561, Mar. 2006.
[52] B.F. Chu-Kung, and M. Feng, "InP/GaAsSb type-II DHBTs with fT >350 GHz," IEE Electronics Lett., vol. 40, pp. 1305, 2004.
[53] M.W. Dvorak, C.R. Bolognesi, O.J. Pitts, and S.P. Watkins, “300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO>6 V” IEEE Electron Device Lett., vol. 22, pp. 361-363, Apr. 2001.
[54] H. G. Liu, N. Tao, S. P. Watkins, and C. R. Bolognesi, “Extraction of the average collector velocity in high-speed “Type-II” InP-GaAsSb-InP DHBTs,” IEEE Electron Device Lett., vol. 25, pp. 769-771, Sep. 2004.
[55] M. W. Dvorak, “Design, fabrication and characterization of ultra highspeed InP/GaAsSb/InP double heterojunction bipolar transistors,” Ph.D.dissertation, Simon Fraser University, Burnaby, Canada, 2001.
[56] Bing-Ruey Wu, William Snodgrass, Milton Feng, K.Y. Cheng, "High-speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers", J. Crystal Growth, vol. 301-302, pp. 1005-1008, 2007.
[57] R. Krithivasan, Y. Lu, J.D. Cressler, J.-S. Rieh, M.H. Khater, D. Ahlgren, and Greg Freeman, "Half-Terahertz Operation of SiGe HBTs", IEEE Electron Device Lett., vol. 27, pp. 567-569, July. 2006.
[58] A.J. Joseph, D.L. Harame, B. Jagannathan, D. Coolbaugh, D. Ahlgren, J. Magerlein, L. Lanzerotti, N. Feilchenfeld, S. St Onge, J. Dunn, and E. Nowak, "Status and direction of communication technologies - SiGe BiCMOS and RFCMOS", IEEE Proceedings, vol. 93, pp. 1539-1558, Sep. 2005.
[59] C. R. Bolognesi, N. Matine, M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, “InP/GaAsSb/InP Double HBTs: A New Alternative for InP-Based DHBTs”, IEEE Trans. Electron Devices, vol. 48, pp. 2631-2639, Nov. 2001.
[60] F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, N.O. Sokal, “Power amplifiers and transmitters for RF and microwave,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 814-826, Mar. 2002.
[61] T. Iwai, K, p. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, “ 42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular Phone Systems,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2567-2573, Dec. 2000.
[62] P. F. Chen, Y. M. T. Hsin, R. J. Welty, P. M. Asbeck, R. L. Pierson, P. J. Zampardi, W.-J. Ho, M. C. V. Ho, and M. F. Chang, “Application of GaInP/GaAs DHBT’s to Power Amplifiers for Wireless Communications,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1433-1438, Aug. 1999.
[63] Y. Yang; K. Choi, K.P.Weller, “DC Boosting Effect of Active Bias Circuits and Its Optimization for Class-AB InGaP–GaAs HBT Power Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1455-1463, May 2004.
[64] T. B. Nishimura, M. Tanomura, K. Azuma, K. Nakai, Y. Hasegawa, H. Shimawaki, “A 50% Efficiency InGaP/GaAs HBT Power Amplifier Module for 1.95 GHz Wide-Band CDMA Handsets,” IEEE Radio Freq. Integr. Circuits Symp., Phoenix, AZ, pp.31-34., May 2001.
[65] N. L. Wang, N. H. Sheng, M. -C. F. Chang, W. J. Ho, G. J. Sullivan, E. A. Sovero, J. A. Higgins, and P. M. Asbeck “Ultrahigh power efficiency operation of common-emitter and common-base HBT's at 10 GHz,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1381-1390, Oct. 1990.
[66] T. Niwa, T.Ishigaki, H. shimawaki, and Y. Nashimoto, “A Composite-Collector InGaP/GaAs HBT with Ruggedness for GSM Power Amplifiers,” IEEE Microwave Symp., Philadelphia, PA, pp. 711-714, Jun. 2003.
[67] M. Iwamoto, C. P. Hutchinson, J. B. Scott, T. S. Low, M. Vaidyanathan, P. M. Asbeck, and D. C. D’Avanzo, “Optimum Bias Conditions for Linear Broad-Band InGaP/GaAs HBT Power Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 50, pp.2954-2962, Dec. 2002.
[68] W. D. van Noort, L. C. N. de Vreede, H. F. F. Jos, L. K. Nanver, and J. W. Slotboom, “Reduction of UHF Power Transistor Distortion with a Nonuniform Collector Doping Profile,” IEEE J. solid-state circuits, vol. 36, pp. 1399-1406, Sep. 2001.
[69] C. T. Kirk, “A Theory of Transistor Cutoff Frequency (fT) Falloff at High Current Densities,” IRE Trans. Electron Devices, vol. 9, pp.164-174, Mar. 1962.
[70] P.J. Zampardi and D.-S. Pan, “Delay of Kirk Effect Due to Collector Current Spreading in Heterojunction Bipolar Transistors”, IEEE Electron Device Lett., vol. 17, pp.470-472, Oct. 1996.
[71] N. Hayama and K. Honjo, “ Emitter Size Effect on Current Gain in Fully Self-aligned AlGaAs/GaAs HBT’s with AlGaAs surface Passivation Layer,” IEEE Electron Device Lett., vol. 11, pp. 388-390, Sep. 1990.
[72] M. Iwamoto, P. M. Asbeck, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X. Qin, L. H. Camnitz, and D. C. D'Avanzo, “Linearity Characteristics of GaAs HBTs and the Influence of Collector Design, “ IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2377-2388, Dec. 2000.
[73] D. R. Pehlke and D. Pavlidis, “Evaluation of the Factors Determining HBT High-Frequency Performance by Direct Analysis of S-Parameter Data,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2367-2373, Dec.1992.
[74] S. Heckmann, J. M. Nebus, R. Quere, J. C. Jacquet, D. Floriot, and P. Auxemery, “Measurement and Modeling of Static and Dynamic Breakdowns of Power GaInP/GaAs HBTs,” IEEE Microwave Symp., vol. 2, pp. 1001-1004, 2002.
[75] K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. G. Aitken, M. Nishimoto, J. H. Elliott, T. R. Block, A. K. Oki, and D. C. Streit, “A 44 GHz High IP3 InP HBT MMIC Amplifier for Low DC Power Millimeter-Wave Receiver Applications”, IEEE J. Solid-State Circuits, vol. 34, pp. 1188-1195, 1999.
[76] S. Tanaka, S. Yamanouchi, Y. Amamiya, T. Niwa, K. Hosoya,; H. Shimawaki, K. Honjo, “A Ka-band HBT MMIC power amplifier”, IEEE Microwave Symp., pp. 553-557, 2000.
[77] Y. L. Tang, N. Wadefalk, M. A. Morgan, S. Weinreb, “Full Ka-band High Performance InP MMIC LNA Module”, IEEE Microwave Symp., pp. 81-84, 2006.
[78] R. S. Virk, M. Y. Chen, C. Nguyen, T. Liu, M. Matloubian, and D. B. Rensch, “A High-Performance AlInAs/InGaAs/InP DHBT K-Band Power Cell”, IEEE Microw. Wireless Compon. Lett., vol. 7, pp.323-325, Oct. 1997.
[79] S. Krishnan, M. Dahlstrom, T. Mathew, Y. Wei, D. Scott, M. Urteaga, and M. Rodwell InP/InGaAs/InP double heterojunction bipolar transistors with 300 GHz fmax. IEEE Indium Phosphide Relat Materia, pp. 31-34, 2001.
[80] H. F. Chau, D. Pavlidis, J. Hu, and K. Tomizawa, “Breakdown-speed considerations in InP/InGaAs single- and double-heterojunction bipolar transistors”, IEEE Trans. Electron Devices, vol. 40, pp. 2-8, Jan. 1993.
[81] S. Lee, “Effects of Pad and Interconnection Parasitics on Forward Transit Time in HBT’s”, IEEE Trans. Electron Devices, vol. 46, pp. 275-280, Feb. 1999.
[82] D. Costa, W.U. Liu, and J.S. Harris, “Direct Extraction of the AlGaAs/GaAs Heterojunction Bipolar Transistor Small-Signal Equivalent Circuit”, IEEE Trans. Electron Devices, vol. 38, pp. 2018-2024, Sep. 1991.
[83] M. Hafizi, P.A. Macdonald, T. Liu, D. B. Rensch, and T. C. Cisco, “Microwave power performance of InP-based double heterojunction bipolar transistors for C- and X-band applications”, IEEE Microwave Symp., pp.671-674, 1994.
[84] C. Nguyen; T. Liu; M. Chen, H.C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications”, IEEE Electron Device Lett., vol. 17, pp. 133-135, Mar. 1996.
[85] H.-F. Chau, H.-Q. Tserng, and E. A. Beam, “Ka-band power performance of InP/InGaAs/InP double heterojunction bipolar transistors”, IEEE Microwave and Guided Wave Lett., vol. 6, pp. 129-131, Mar. 1996.
[86] Zhi Jin, W. Prost, S. Neumann, and F. J. Tegude, “Current transport mechanisms and their effects on the performances of InP-based double heterojunction bipolar transistors with different base structures”, Appl. Phys. Lett., vol. 84, pp. 15, Apr. 2004.
[87] C. R. Bolognesi, N. Matine, M. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, “Non-Blocking Collector InP/GaAs0.51Sb0.49/InP Double Heterojunction Bipolar Transistors with a Staggered Lineup Base–Collector Junction”, IEEE Electron Device Lett., vol. 20, pp. 155-157, Apr. 1999.
[88] C. R. Bolognesi, M.W. Dvorak, and S.P. Watkins, “ Type-II Base-Collector Performance Advantage and Limitation in High-Speed NpN Double Heterojunction Bipolar Transistor (DHBTs)”, IEICE Trans. Electron, vol. E86-C, pp. 1929-1934, Oct. 2003.
[89] N. Matine, M.W. Dvorak, C.R. Bolognesi, X. Xu, J. Hu, S.P. Watkins and M.L.W. Thewalt, “Nearly ideal InP/GaAsSb/lnP double heterojunction bipolar transistors with ballistically launched collector electrons”, IEE Electronics Lett., vol. 34, pp. 1700-1701, Aug. 1998.
[90] H. G. Liu, N. Tao, S. P. Watkins, and C. R. Bolognesi, “Extraction of the Average Collector Velocity in High-Speed “Type-II” InP–GaAsSb–InP DHBTs ,” IEEE Electron Devices Lett., vol. 25, pp.769-771, Dec. 2004.
[91] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, “Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., vol. 73, pp. 19, Nov. 1998.
[92] Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, “Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter,” Appl. Phys. Lett., vol. 87, pp. 023503, July 2005.
[93] S.W. Cho, J.H. Yun, D.H. Jun, J.I. Song, I. Adesida, N. Pan, J.H. Jang, “High performance InP/InAlAs/GaAsSb/InP double heterojunction,” Solid-State Electronics, vol. 50, pp. 902-907, June 2006.
[94] Y. Oda, K. Kurishima, N. Watanabe, M. Uchida, T. Kobayashi, “High-current-gain InAlP/AlGaAsSb/InP HBTs with a compositionally-graded AlGaAsSb base grown by MOCVD,” IEEE Indium Phosphide Relat Materia, New Jersey, USA, pp. 92-95, May 2006.
[95] H. J. Zhu, J. M. Kuo, P. Pinsukanjana, X. J. Jin, K. Vargason, M. Herrera, “GaAsSb-BASED HBTS GROWN BY PRODUCTION MBE SYSTEM,” IEEE Indium Phosphide Relat Materia, Kagoshima Japan, pp. 338-341, June 2004.
[96] Che-ming Wang, Yue-Ming Hsin, Haijun Zhu, J. M. Kuo, and Y. C. Kao, “Temperature dependent study of InAlAs-InP/GaAsSb/InP double heterojunction bipolar transistors,” Applied Physics Letters, vol. 90, 232102, June 2007.
[97] S.S. Yi, D.R. Chamberlin, G. Girolami, M. Juanitas, D. Bour, N. Moll, and R. Moon, “Growth and properties of GaAsSb/InP and GaAsSb/InAlAs superlattices on InP,” Journal of Crystal Growth, vol. 248, pp. 284-288, 2003.
[98] Z. Abid, S.P.McAlister, W.R. McKinnon, and E.E. Guzzo, “Temperature Dependent DC Characteristics of an InP/InGaAs/InGaAsP HBT”, IEEE Electronics Lett., vol. 15, pp. 178-180, May 1994.
[99] H. Yang, H. Wang, G.I. Ng, H. Zheng, and K. Radhakrishnan, „ DC Characterization of Metamorphic InP/InGaAs Heterojunction Bipolar Transistors at Elevated Temperature”, Jan. J. Apply Phys., vol. 41, pp. 1136-1138, 2002.
[100] H.J. Pan, W.C. Wang, K.B. Thei, C.C. Cheng, K.H. Yu, K.W. Lin, C.Z. Wu, and W.C. Liu, “Investigation of temperature-dependent performances of InP In0.53Ga0.34Al0.13As heterojunction bipolar transistors”, Semicond. Sci. Technol., vol. 15, pp. 1101-1106, 2000.
[101] J. Kruse, P. J. Mares, D. Schemer, M. Feng, and G. E. Stillman, “Temperature dependent study of carbon-doped InP InGaAs HBT's”, IEEE Electronics Lett., vol. 17,pp. 10-12, Jan. 1996.
[102] H. Wang, and G.I. Ng, “Electrical Properties and Transport Mechanisms of InP/InGaAs HBTs Operated at Low Temperature”, IEEE Trans. Electron Devices, vol. 48, pp. 1492-1497, Sep. 2001.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2007-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明