博碩士論文 90521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.174.43.27
姓名 杜麗萍(Li-Ping Tu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
(High-Sensitivity Planar Si-Based MSM Photodetector with Very Thin Amorphous Silicon-Alloy Quantum-Well-Like Barrier Layers)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體
★ 大面積矽偵測器的製程改良與元件設計★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文提要
本論文探討的主題是具非晶矽/非晶碳化矽或非晶矽/非晶矽化鍺薄膜複層之矽基金屬-半導體-金屬光檢測器的特性。在非晶矽/非晶碳化矽複層方面,利用非晶碳化矽與非晶矽的光能隙高度不同所形成的能帶不連續可有效降低元件的暗電流,進而提昇元件在低入射光功率時的光電流與暗電流比值。此種結構元件在非常弱的入射光功率(0.5μW)下,仍可產生相當高的光電流對暗電流比值。此光電流與暗電流比值相較於以往僅具有一層非晶矽薄膜的元件高出近一千倍,如此高靈敏度的光檢測器元件可大幅降低光檢測器在低入射光功率操作時的位元錯誤率(bit error rate)。再者,在一週期性0.83μm 60 ps的光脈衝量測下,此元件暫態響應的平均半高寬(FWHM)和下降時間(fall-time)分別為68.18和294.7 ps。相較於以往的許多矽基光檢測器的報告,本研究探討的元件所採用類量子井的非晶質薄膜複層結構可有效提昇金屬-半導體-金屬矽基光檢測器的靈敏度。另外,具非晶矽/非晶矽化鍺薄膜複層之矽基金屬-半導體-金屬光檢測器的特性亦被加以探討。我們詳盡地探討不同非晶矽/非晶矽化鍺薄膜複層厚度與結構,以及氫氣電漿處理(H2-plasma treatment)非晶質矽化鍺薄膜表面等等實驗因子的改變對元件特性的影響。
摘要(英) Abstract
The planar Si-based metal-semiconductor-metal photodetectors (MSM-PDs) with a-Si:H/a-SiC:H (or a-Si:H/a-SiGe:H) multi-layers to reduce device dark current had been studied. For the ones with a-Si:H/a-SiC:H multi-layers, their sensitivity could be enhanced very effectively. Under a very weak incident light power (0.5 μW) and with a 4 V bias-voltage, the device photo- to dark- current ratio (Ip/Id) could be 103 times higher than that of the previously reported one. Also, the average full-width-at-half-maximum (FWHM) and fall-time of the device temporal response were 68.18 and 294.7 ps, respectively, as measured with a periodic 0.83μm 60 ps light pulse and a 10 V bias-voltage. Comparing to the previously reported various Si-based PDs, this device exhibited significant improvements in device sensitivity and temporal-response due to the employed quantum-well-like amorphous silicon-alloy barrier layers. Moreover, the Si-based MSM-PDs with a-Si:H/a-SiGe:H multi-layers also had been investigated. The effects of multi-layer thickness and structure, and H2-plasma treatment of a-SiGe:H films on device performances had been studied also.
關鍵字(中) ★ 光檢測器
★ 金屬–半導體–金屬
關鍵字(英) ★ High-Sensitivity
★ Photodetector
★ MSM
論文目次 Contents
Abstract (Ⅲ)
Table Captions (Ⅴ)
Figure Captions (Ⅵ)
Chapter 1 INTRODUCTION 1
Chapter 2 DEVICE OPERATION PRINCIPLES AND FABRICATION PROCESSES 3
2-1 Operation Principles of MSM-PD 3
2-2 Device Fabrication Processes 9
Chapter 3 MEASUREMENT TECHNIQUES 22
3-1 Responsivity 22
3-2 Response Speed 22
Chapter 4 EXPERIMENTAL RESULTS AND DISCUSSION 26
4-1 MSM-PDs with a-Si:H/a-SiC:H barrier 26
4-1-1 Thickness effect of a-Si:H/a-SiC:H barrier layers 26
4-1-2 Comparisons of several MSM-PDs 33
4-2 MSM-PDs with a-Si:H/a-SiGe:H barrier layers 46
Chapter 5 CONCLUSION 55
References 57
參考文獻 References
[1]D. Knipp, P.G. Herzog, and H. Stiebig, “Stacked amorphous silicon color sensors,” IEEE Trans. Electron Devices, vol. 49,pp. 170-176, 2002.
[2]A.D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “A PMOS tunneling photodetector,” IEEE Trans. Electron Devices, vol. 48,pp. 1747-1749, 2001.
[3]L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “A U-Grooved Metal-Semiconductor-Metal Photodetector (UMSM-PD) with an i-a-Si:H Overlayer on a [100] p-Type Si Wafer,” IEEE Photo. Technol. Lett., vol. 10, no. 4, pp. 579-581, 1998.
[4]L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “Characteristics of MSM photodetector with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Devices, vol. 45, pp. 2018-2023, 1998.
[5]L. H. Laih, T. C. Chang, Y. A. Chen, W. C. Tsay, and J. W. Hong, “Characteristics of Si-based MSM photodetectors with an amorphous-crystalline heterojunction,” Solid-State Electronics, vol. 41, pp. 1693-1697, 1997.
[6]C. S. Lin, R. H. Yeh, C. H. Liao, and J. W. Hong, “Improving characteristics of Si-based trench-electrode metal-semiconductor- metal photodetectors using self-aligned process,” IEE Proc. Optoelectronics, vol. 148, pp. 195-198, 2001.
[7]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 2nd ed, Chap 10, p. 613, 1985.
[8]S. Y. Wang, D. M. Bloom, and D. M. Collins, “Ultrahigh speed photodetectors,” SPIE, vol. 439, pp. 178, 1993.
[9]A. Selvarajan, K. Shenai, Vijai K. Traipathi, Optoelectronics: Technologies and Applications, spie optical engineering press, Chap. 10, pp. 211-218, 1993.
[10]H. Mimura, and Y. Hatanaka, “ Carrier transport mechanisms of p-type amorphous―n-type crystalline silicon heterojunctions,” J. Appl. Phys. vol. 71, pp.2315-2320, 1992.
[11]L. F. Marsal, J. Pallares, and X. Corregi, “Electrical characterization of n-amorphous/p-crystalline silicon heterojunctions,” J. Appl. Phys. vol. 79, pp.8493-8497, 1996.
[12]C. S. Lin, R. H. Yeh, C. H. Liao, and J. W. Hong, “High-speed Si-based metal-semiconductor-metal photodetectors with an additional composition-graded i-a-Si1-xGex:H layer,” Solid-State Electronics, vol. 46, pp. 2027-2033, 2002.
指導教授 洪志旺(Jyh-Wong Homg) 審核日期 2003-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明