博碩士論文 90521038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:35.153.135.60
姓名 許績威(Ji-Wei Shiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體
(Top-Gate a-Si1-xGex:H and Poly-Si Thin-Film Transistors with Schottky Source/Drain Contacts )
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 大面積矽偵測器的製程改良與元件設計★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們成功製作出利用鋁/銻雙層金屬作為源/汲極的蕭特基接觸的非晶矽(a-Si:H)、非晶矽化鍺(a-SiGe:H)、多晶矽(poly-Si)薄膜電晶體。其中,藉由使用一層很薄的五族金屬銻來取代傳統的n型摻雜,我們可有效率地節省傳統薄膜電晶體的製程步驟進而增加製程效率。
實驗結果顯示,以多晶矽為通道的薄膜電晶體擁有最好的電晶體特性,而在非晶矽的材料中,以非晶矽當通道的元件電性比以非晶矽鍺當通道的元件電性來的優越。在同類的非晶矽鍺薄膜電晶體中,我們發現,當通道中鍺含量越高,電晶體的飽和電流及遷移律會上升而臨限電壓會下降。
最後我們將比較非晶矽(a-Si:H)、非晶矽化鍺(a-SiGe:H)、多晶矽(poly-Si)薄膜電晶體在熱退火處理之後的各種特性,經使用退火處理後發現退火的溫度越高則元件的電性越差。
摘要(英) In this thesis, electrical characteristics of the top-gate staggered TFTs (thin-film transistors) with the Schottky barrier source/drain (S/D) had been studied. The Sb/Al dual metals were evaporated onto channel layer, e.g. a-Si1-xGex:H, or poly-Si, of TFT , where Sb metal was intentionally used as dopant of channel layer, and the electrical characteristics of the obtained TFTs had been compared and analyzed.
For the Schottky barrier S/D (SB-S/D) top-gate a-Si1-xGex:H TFTs, the experimental results indicated that a thinner channel layer could be used to obtain the better current-voltage characteristics of a TFT. Also, the effects of Ge content of a-Si1-xGex:H channel layer and annealing process on the performances of TFTs had been investigated . It was found the device drain current and effective electron mobility would increase, and threshold voltage would decrease with the increasing of Ge content in a-Si1-xGex: H channel. Also, the electrical characteristics of these TFTs became poorer after annealing process.
The electrical characteristics of the SB-S/D top-gate poly-Si TFTs had been also studied. It was found that the obtained poly-Si TFTs had the significantly better electrical characteristics than those of a-Si1-xGex:H TFTs.
關鍵字(中) ★ 蕭特基接觸的薄膜電晶體 關鍵字(英) ★ Thin-Film Transistors with Schottky Source/Drain
論文目次 CONTENTS
ABSTRACT……………………………………………………….……Ⅰ
CONTENTS……………………………………………….……………Ⅱ
TABLE CAPTIONS……………………………………….…………....Ⅳ
FIGURE CAPTIONS…………………………………….………….….Ⅴ
Chapter 1 INTRODUCTION…………...……………………..…….…1
Chapter 2 SB-S/D TOP-GATE a-Si1-xGex:H TFT……………….……..3
2-1 Fabrication Processes……………………………...…….…...3
2-2 Theory……………………………………………....………12
2-3 Results and Discussion………...……..….………...….…….15
2-3.1 Electrical characteristics……………………...…...15
2-3.2 Effect of Ge content……………….…….…….….20
2-3.3 Effect of annealing.…………….……………...….26
Chapter 3 SB-S/D Poly-Si TFT…………...…....……………….….…33
3.1 Fabrication Processes…….………..…...…………..….33
3-2 Results and Discussion……..………...……………..…38
3-2.1 Electrical characteristics……………...…..….38
Chapter 4 CONCLUSION…………………...………...…..……….....41
REFERENCES…………………………...…………………..…………43
參考文獻 [1] T .J. King and K. C. Saraswat, “Low-Temperature (<500℃) Fabrication of Poly-Si Thin-Film Transistors, “IEEE Electron Device Lett., vol. 13, no.6,pp.309, 1992
[2] Japanese Technology Evaluation Center, “Display technologies in Japan”,June1992.*Source://http://itri.Loyola.edu/dsply_jp/toc.htm
[3] K. T-Y. Kung and R. Reif, “Comparison of Thin-Film Transistors at Low Temperature ( < 600℃ ) on As-deposited and Amorphized Polycrystalline Si, “ J. Appl. Phys. vol. 61, no. 4, pp.1638, 1987.
[4] M. J Thomson., N.M. Johnson, M. D. Moyer, and R. Lujan, “Thin-film transistors on a-Si:H”, IEEE Trans. Electron Devices, vol.29, pp.1643-1646, 1982.
[5] Street, R. A., and M. J. Thompson, “Electronic States at the Hydrogenated Amorphous Silicon Silicon Nitride Interface,” Appl. Phys. Lett., vol. 45, pp. 769 , 1984.
[6] M. Lecontellec, F. Maurice. J.Richard. B. Vinouze, and F. Richou, J. Non-Cryst. Solids, vol. 97/ 98. pp.287, 1987.
[7] H. Fukui, F. Minoru, and H. Koichiro, “Single-Electron Transistor in Silicon-on-Insulator with Schottky-Contact Tunnel Barriers”, Jpn. J. Appl. Phys., vol.36, pp.4147-4150,1977.
[8] S. A. Rishton, K Ismail., J. O.Chu, and K. Chan, “A MOS Transistor with Schottky Source/Drain Contacts and a Self-Aligned Low-Resistance T-Gate”, Microelectronic Engineering, vol. 35, pp. 361-363, 1997.
[9] C. Wang, J. P. Snyder, J. R. Tucker, “Sub-40 nm Pt-Si Schottky Source/Drain Metal-Oxide-Semiconductor Field-Effect Transistors,” Appl. Phys. Lett., vol. 74, pp. 1174, 1999.
[10] M. Nishika, and T. Asano, “Reduction of the Floating Body Effect in SOI MOSFETs by Using Schottky Source/Drain Contacts,” Jpn. J. Appl. Phys., vol, 37, pp.1295, 1998.
[11] Q. T. Zhao, F. Klinkhammer, M. Dolle, L. Kappius, and S. Mantal, “A Novel Silicide Nanopatterning Method for the Fabrication of Ultra-Short Channel Schottky-Tunneling MOSFETs,” Microelectronic Engineering, vol. 50, pp. 133-138, 2000.
[12] T. J. King, and K. C. Saraswat, “Polycrystalline Silicon-Germanium Thin-Film Transistors,” IEEE Trans. on Electron Devices, vol. 41, pp. 1581-1591, 1994.
[13] J. S. Chou, W. J. Sah, S. C. Lee, T. C. Chang, and J. C. Wang, “Microcrystalline Silicon Deposited by Grow Discharge Decomposition of Heavily Diluted Silane”, Material Chemistry and Physics, vol. 32, pp. 273-279, 1992.
[14] K. C. Hsu, H. Chang, C.S. Hong, and H.L. Hwang, “The Study on Microstructure by NMR, FTIR, Raman,, Conductivity, and Optical Bandgap in Hydrogenated Amorphous Silicon Prepared by Novel Fabrication Methods”, Mat. Res. Soc. Symp. Proc., vol. 258, pp.69-74, 1992.
[15] J. Kanicki, E. Hasan, D.F Kotecki., T. Takamori, and J.H. Griffith, ”Properties and Application of Undoped Hydrogenated Microcrystalline Silicon Thin Films”, Mat. Res. Soc. Symp. Proc., vol. 149, pp. 173-179, 1989.
[16] M.Hack, M.S. Shur, and J.G. Shaw, “Physical Model for Amorphous-Silicon Thin Film Transistor and Their Implementation in a Circuit Simulation Program ”,IEEE Trans. Electron. Devices, vol. 36, no. 12, pp. 2753-2769, 1989.
[17] S.C. Jain, “Germainium-Silicon Strained Layers and Heterostructures”, Academic Press. Inc., 1994.
[18] T. Takeshita, H. Kurhara, H. Ohshima, I. Yudasaka, and S. Morozumi, “Completely Integrated a-Si/a-SiC Heterojunction Contact-Type Linear Image Senaor with Poly-Si TFT drivers,” in Society for Inf. Display Int. Symp., Dig. Tech. Papers, vol. 20, pp. 255-258, 1989.
[19] G. Sarcona, M. K. Hatalis, and A. Catalano, “Amorphous Silicon and Silicon-Germanium Thin-Film Transistors formed by ion-implantation”, Mat, Res. Soc. Symp., vol. 297, pp. 907, 1993.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2003-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明