博碩士論文 90521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.60.166
姓名 林詠祥(Yong-Xiang Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
(The study of silicide on Si/Si1-XGeX interface )
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 矽鍺異質源/汲極結構與pn二極體之研製
★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製★ 應用於單電子電晶體之矽/鍺量子點研製
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製
★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究
★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製★ 有機非揮發性記憶體之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文的研究重點,在於如何製造出低阻值、表面平整的金屬矽化物,以便將來應用到金氧半電晶體元件的製作。
首先,我們簡介了一般形成金屬矽化物常用的金屬材料,其優缺點的敘述,這些金屬有鈦、鈷、鎳;而我們先將金屬鈦應用到在我們實際製作金氧半電晶體元件時,會遇到的矽基板條件,這包括P型與N型的矽基板,因此我們一開始的實驗,便是針對金屬鈦與未摻雜、P型與N型的矽基板,形成的鈦矽化合物在不同的快速熱回火溫度時的阻值分析、表面分析及鈦矽化合物薄膜的組成元素分析;接著便將此實驗流程應用到鎳矽化合物的製作,我們同樣比較了在矽基板但不同的摻雜情形時,在不同的快速熱回火溫度的阻值分析、表面分析;最後再將鎳矽化合物的製程應用到P型與N型的矽鍺基板,一樣是比較其阻值與表面的分析。
摘要(英) In this thesis, the focus is how to fabricate silicide with low resistance and smooth interface. The experimental results promise the potential of MOSFET application.
First, we describe the common silicide about advantages and faults. In Ti-silicide, we use undoped、P-type and N-type Si-substrates. We analyze Ti-silicide resistance、interface and the element of composing in different RTA(raped thermal annealing) temperature and time. In Ni-silicide, we not only use undoped、P-type and N-type Si-substrates but also P-type and N-type SiGe-substrates. We analyze Ni-silicide resistance and interface in different RTA temperature and time in the same way.
關鍵字(中) ★ 金屬矽化物
★ 鈦矽化合物
★ 鎳矽化合物
關鍵字(英) ★ silicide
★ TiSi2
★ NiSi
論文目次 目錄
第一章 簡介…………………………………………………1
1-1 金屬矽化物的實際應用…………………………1
1-2 常用的材質………………………………………4
1.3 矽鍺/矽異質結構簡介…………………………8
1.4 研究動機…………………………………………9
第二章 實驗步驟…………………………………………19
第三章 鈦矽化合物之實驗結果……………………………24
3.1 鈦矽化合物之阻值分析…………………………24
3.2 鈦矽化合物之表面分析…………………………26
3.3 鈦矽化合物之元素分析…………………………26
第四章 鎳矽化合物之實驗結果……………………………40
4.1 鎳矽化合物之阻值分析…………………………40
4.2 鎳矽化合物之表面分析…………………………42
第五章 結論與未來展望……………………………………59
參考文獻………………………………………………………61
參考文獻 參考文獻
[1] T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, H. Iwai, “Self- aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Transactions on Electron Devices, vol. 42, pp. 915, 1995.
[2] K. C. Sawaswat and F. Mohammadi, “Effect of Scaling of Interconnections on the Time Delay of VLSI Circuits,” IEEE Trans. Electron Devices, vol. 29, no. 4, pp. 645, 1982.
[3] D. B. Scott, W. R. Hunter and H. Shichijo, “A Transmission Line Model for Silicided Diffusions: Impact on the Performance of VLSI Circuits,” IEEE Trans. Electron Devices, vol. 29, no. 4, pp. 651, 1982.
[4] A. Levitas, "Electrical properties of germanium-silicon alloys," Phys. Rev., vol. 99, pp. 1810, 1955.
[5] M. Glicksman, "Mobility of electrons in germanium-silicon alloys," Phys. Rev, III, pp. 125, 1958.
[6] J. A. Moriarty and S. Krishnamurthy, "Theory of silicon superlattices : Electronic structure and enhanced mobility," J. Appl. Phys. vol. 54, pp. 1892 ,1983.
[7] G. C. Osboum, "Strained-layer superlattices: A brief review," IEEE J. Quantum Electron. QE-22, pp. 1677, 1986.
[8] T.Paul Chow,Andrew J. Steckl,IEEE Transacions on Electron Devices ED-30(1983)p1480
[9] Hiroshi Iwai, “NiSi silicide technology for scaled CMOS” Microelectronic Engineering 60 (2002) 157.
[10] J. C. Barbour, A. E. M. J. Fischer and J. F. van deer Veen, “The thin- film reaction between Ti and thermally grown SiO2,” J. Appl. Phys., vol. 62, pp.2582, 1987.
[11] Jerome B. Lasky, James S. Nakos, Orison J. Cain, and P. J. Geiss, “ Comparison of Transformation to Low- Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices, vol. 38, pp. 262, 1991.
[12] N. S. Parekh, H. Roede, A. A. Bos, A. G. M. Jonkers, and R. D. J.   Verhar, “Characterization and implementation of self-aligned TiSi2 in submicrometer CMOS technology,” IEEE Trans. Electron Devices, vol. 38, pp. 88, 1991.
[13] 國家奈米元件實驗室期刊第五卷第三期
[14] T. Ohguro et al., IEEE Tran. Electron Devices, ED-41, p.2305, 1994.
[15] G. T. Sarcona, M. Stewart, M.K. Hatalis, “Polysilicon thin-film
transistors using self-aligned cobalt and nickel silicide source and drain contacts,” IEEE Electron Device Letters, vol. 20, Issue: 7, pp. 332, 1999.
[16] W.T. Sun, M.C. Liaw, “Suppression of cobalt silicide agglomeration using nitrogen(N2+) implantation,” IEEE Electron Device Letters, vol. 19, pp. 163, 1998.
[17] T. Ohguro et al., Symp. VLSI Technol., p.101 (1997).
[18] S. Ogawa, T. Kousaki, T.Youshida and R. Sinclair, J. Appl. Phys.,70(1991) p827
[19] T. Ohguro et al., Proc. SSDM, p.192 (1993).
[20] T. Ohguro, S. Nakamura, E. Morifuji, M. Ono, T. Yoshitomi, M. Saito, H. S. Momose, Iwai, H. ,“Nitrogen-doped nickel mono-silicide technique for deep submicron CMOS salicide,” in IEDM Tech, Dig., pp. 453 ,1995.
[21] K.-I. Goto, J. Watanabe, T. Sukegawa, A. Fushida, T. Sakuma, T. Sugii, T, “A comparative study of leakage mechanism of Co and Ni salicide processes,” Reliability Physics Symposium Proceedings, pp.363, 1998.
[22] R. People, "Indirect band gap of coherently strained GexSil-x bulk alloys on <001> silicon substrates," Phys. Rev., vol. B32, pp. 1405, 1985.
[23] C. G. Van de Walle and R. M. Martin, "Theoretical calculations of heterojunction discontinuities in the Si/Ge system," Phys. Rev., vol. B34, pp. 5621, 1986.
[24] R. People and J. C. Bean, "Band alignments of coherently strained GexSil-x /Si heterostructures on <001> GeySi1-y substrates," Appl. Phys. Lett., vol. 48, pp. 538, 1986.
[25] M. Fukumoto et al. “Titanium silicide interconnect technology for submicrometer DRAM,” IEEE Trans. Electron Devices, vol. 35, pp. 2328, 1988.
[26] T. P. Chow, W. Katz, and G. Smith, “Titanium silicide formation on BF2+-implanted silicon,” Appl. Phys. Lett., vol. 46, pp. 41, 1985.
[27] P. Revesz et al., “Growth of titanium silicide on ion-implanted silicon,” J. Appl. Phys, vol. 54, pp. 1860, 1983.
[28] D. B. Aldrich et al., “Stability of C54 titanium germanosilicide on silicon-germanium alloy substrate,” J. Appl. Phys, vol. 77, pp. 5107, 1995.
[29] T. Morimoto, “A NiSi silicide technology for advanced logic devices” IEDM (1991) 653.
[30] T. Jarmar, “Morphological and phase stability of nickel-germanosilicide on Si1-xGex under thermal stress” Jnl. Appl. Phy. VOL. 92. NO. 12 (2002) 7193.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2004-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明