博碩士論文 90521059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.138.105.31
姓名 陳玟蕙(Wen-Hui Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 於互補式金氧半導體製程之對稱立體式被動元件及壓控震盪器設計
(Symmetric 3D Passive Components and VCO Design in CMOS Process)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 高速序列傳輸之量測技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 類神經網路應用於高階功率模型之研究
★ 使用SystemC語言建立IEEE 802.3 MAC 行為模組之研究★ 以回填法建立鎖相迴路之行為模型的研究
★ 高速傳輸連結網路的分析和模擬★ 一個以取樣方式提供可程式化邏輯陣列功能除錯所需之完全觀察度的方法
★ 抑制同步切換雜訊之高速傳輸器★ 以行為模型建立鎖相迴路之非理想現象的研究
★ 遞迴式類神經網路應用於序向電路之高階功率模型的研究★ 用於命題驗証方式的除錯協助技術之研究
★ Verilog-A語言的涵蓋率量測之研究★ 利用類神經模型來估計電源線的電流波形之研究
★ 5.2GHz CMOS射頻接收器前端電路設計★ 適用於OC-192收發機之頻率合成器和時脈與資料回復電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
具有較寬頻帶及較快速資料傳輸速率的無線通訊網路系統,例如:IEEE 802.11a,在最近成為一項吸引人深入研究的領域。隨著互補式金氧半導體製程(CMOS process)的進步,實現低功率,低成本,高整合度的射頻積體電路的可能性大幅提高。本論文以互補式金氧半導體製程之射頻積體電路(CMOS RFIC)為研究目標,研究主題分成兩部分:
第一部份為以互補式金氧半導體之0.18微米製程(CMOS 0.18μm process)製作單晶電感性被動元件之研發,包含電感(inductor),變壓器(transformer)及平衡器(balun)。目前所使用的電感大多為平面式螺旋形架構,耗費較多的面積;且互補式金氧半導體製程之矽基板對被動元件產生的寄生效應造成被動元件之損耗及品質因素降低,因此降低成本及提升元件效能為主要之研究目標。高頻電路設計中需使用到電感性被動元件做許多電路上之運用,例如:匹配網路(matching network),寬頻放大器(wideband amplifier),高頻阻絕(RF chock),電感電容諧振器(LC tank resonator),訊號偶合(signal coupling),相位分離(phase splitting)等等。此類元件在電路中往往佔據相當可觀的面積,因此本論文之研究重點在於研發立體對稱式被動元件架構,有效壓制共模雜訊及減少面積的消耗。對稱立體式電感架構並採用多層金屬並聯的方式,以提升元件之品質因素。同時,本論文中以電位能儲存觀點推導電感之自我共振頻率。經由實際量測結果,對稱立體式在小感值(3nH以下)及高頻段的應用比微型立體式電感有較佳之頻值因素及自我共振頻率,同時,論文中亦提出此對稱立體式電感之應用所在。本論文亦提出一新型對稱立體式變壓器(transformer)架構,以提升元件之耦合效應及在較小面積中實現1:1及1:n之電壓轉換。而所提出之對稱立體式平衡器(balun)在5.25~6GHz頻率範圍之下其增益誤差小於0.8dB,其相角誤差在5.25 GHz為4o。
第二部分為互補式金氧半導體之電感電容壓控振盪器(CMOS LC VCO) 研究。壓控震盪器是射頻電路中重要角色之一,可運用於頻率合成器中,其重要效能參數為相位雜訊、可調震盪頻率範圍、功率消耗。環形震盪器可有較高之可調震盪頻率範圍但相位雜訊表現較差,而電感電容壓控振盪器之可調震盪頻率範圍較窄但相位雜訊表現較佳,且適用於高頻震盪電路。本論文根據相關文獻深入研究電感電容壓控振盪器之相位雜訊模型及改進之方法,整理出設計所需之考量,及設計流程。為避震盪器之震盪訊號受到傳送端之功率放大器之影響,故將震盪器設計在三分之二系統頻段(5.15~5.35GHz)之頻率範圍。因此,以互補式金氧半導體之0.18微米製程(CMOS 0.18μm process)設計3.5GHz四相位電感電容壓控振盪器(Quadrature phase LC VCO),以HP ADS模擬器之模擬結果具有價值參數(figure of merit)為183.5,與最近相關文獻之效能比較結果,此設計具有良好之價值參數,最後藉由實際量測,以驗證模擬及實際結果。
摘要(英) Abstract
The Wireless Local Area Networks (WLANs) such as IEEE 802.11a,which have wider bandwidth and faster data communication rate become more attractive in recent investigation. The ongoing down scaling of CMOS gate length and improvement of the CMOS process make it become possible to integrate whole RF transceiver with low power and low cost on a chip using CMOS process. In this thesis,we focus on the CMOS RFICs and the thesis is divided from two part:
Part I is the design of the monolithic inductive passive components,including inductor,transformer and balun in CMOS 0.18μm process. Usually,the inductors in recent papers are planar spiral architectures,which occupy larger area. At the same time,the quality factor is decreased due to the series parasitic effect by conductive substrate of the CMOS process. It is the main target to reduce cost and promote the quality factor. The RFICs apply the inductive passive components to matching network,wideband amplifier,RF choke,LC tank resonator,signal coupling and phase splitting,etc. The symmetric 3D passive components can effectively suppress the common mode noise and reduce occupied area. Moreover,the symmetric 3D inductor with improved multi-level shunt has higher quality factor in low frequency and its self-resonant frequency is derived by the concept of voltage distribution and electric energy stored. In experimental result,the proposed symmetric 3D inductor has better quality factor and self-resonant frequency than miniature 3D inductor for smaller inductance (smaller than 3nH) in high frequency applications. At the same time,the symmetric 3D transformers are proposed in this thesis to improve efficiently the signal coupling and approach 1:1 and 1:n voltage transformation in the smaller area. The proposed symmetric 3D balun manifests less than 0.8 dB gain mismatch from 5.25GHz to 6GHz and phase error is about 4o at 5.25 GHz frequency band of interests.
Part II is the design of quadrature phase LC VCO,which plays an important role in CMOS RF ICs application. The main considerable parameters are phase noise,tuning range and power consumption. Although the ring oscillator has higher tuning range,its phase noise is bad. On the other hand,the LC VCO has narrow tuning range,but better phase noise performance in high frequency applications. We study the phase noise model and realize the LC VCO design issues and design flow. Note a quadrature VCO based on cross-coupled LC resonators operates at 2/3 of the desired LO frequency f0 (5.15~5.35GHz) to avoid pulling by the power amplifier. Hence,a 3.5GHz quadrature phase LC VCO is designed by ADS simulator in CMOS TSMC018μm process. Finally,the figure of merit (FOM) of this design is equal to 183.5,which is fine compared with the others oscillators in recent papers. Finally,the LC VCO are demonstrated by the measurement.
關鍵字(中) ★ 平衡器
★ 變壓器
★ 壓控震盪器
★ 電感
關鍵字(英) ★ VCO
★ balun
★ inductor
★ transformer
論文目次 Content
Chapter 1 Introduction 1
1.1 Motivation & Introduction 1
1.2 Thesis Organization 2
Chapter 2 Symmetric 3D Inductor Design 4
2.1 Introduction 4
2.2 Inductor Categories and Propose Symmetric 3D Inductor 4
2.3 Inductor’s compact model and loss mechanisms 7
2.3.1 Inductance ~ LS 7
2.3.2 Coupling Capacitor ~ CS 8
2.3.3 Metal Loss ~ Rs 8
2.3.3.1 At low frequency ~ metal track loss 8
2.3.3.2 At high frequency ~ skin effect & eddy current 8
2.3.4 Substrate Loss ~ COX,Csub and Rsub 10
2.4 Quality Fact of Symmetric 3D Inductor 10
2.4.1 Definition of Quality Fact 10
2.4.2 Q of Symmetric 3D Inductor 15
2.5 Self Resonant Frequency of Symmetric 3D Inductor 17
2.6 Measurement Result of Symmetric 3D Inductor 23
2.7 Inductor Design Guideline 26
2.8 Inductor Comparison 27
2.9 Application of the Symmetric 3D Inductor 28
Chapter 3 Symmetric 3D Transformer & Balun 30
3.1 Transformer 30
3.1.1 Introduction 30
3.1.2 Monolithic Transformer 30
3.1.2.1 Inverting & Non-inverting Transformer 31
3.1.2.2 General Transformer Categories 32
3.1.3 Characteristics of the Transformer 34
3.1.3.1 Quality Factor ~ Q 34
3.1.3.2 Self-Resonant Frequency ~ fSR 35
3.1.3.3 Magnetic Coupling Coefficient ~ K 36
3.1.3.4 Characteristic Summary 36
3.1.4 Transformer Compact Model 37
3.1.5 Proposed Symmetric 3D Transformer 42
3.1.6 Transformer Comparison 46
3.1.7 Applications of the Symmetric 3D Transformer 46
3.2 Balun 47
3.2.1 Monolithic Balun 47
3.2.2 Proposed Symmetric 3D Balun 48
3.2.3 Applications of the Symmetric 3D Balun 49
Chapter 4 Quadrature Phase LC VCO Design 50
4.1 Introduction 50
4.2 General Considerations 51
4.3 Phase Noise Analysis 53
4.3.1 What Is Phase Noise 53
4.3.2 Phase Noise Model 54
4.3.2.1 Lesson’s Model ~ LTI System 54
4.3.2.2 Ali Hajimiri Model ~ LTV System 57
4.4 Varactor 60
4.4.1 PN Junction Varactor 60
4.4.2 MOS Varactor 61
4.5 Quadrature Phase LC VCO Design 65
4.5.1 Quadrature Generation 65
4.5.2 Design Flow 66
4.5.3 Quadrature VCO Design 68
4.5.4 Quadrature VCO Comparison 71
4.6 LC VCO Design Issues 72
4.7 Measurement Result 73
4.7.1 Differential LC VCO 73
4.7.2 Quadrature LC VCO 76
Chapter 5 Conclusion 81
References………………………………………………………………83
參考文獻 References
[1] “RF MICROELECTRONICS” Behzad Razavi,Prentice Hall,1998
[2] “Design of Integrated Circuits for Optical Communications” Behzad Razavi,McGRAW HILL,2003
[3] “DESIGN,SIMULATION AND APPLICATIONS OF INDUCTORS AND TRANSFORMERS FOR SI RF ICS” Ali Niknejad,Robert G. Meyer,Kluwer Academic Publishers,2000
[4] “Area and Cost Effectiveness of RF Front-End Integrated Circuits ” Hao-Shun Yang,Department of Electronics Engineering NTHU,Master Thesis,2002
[5] “The Study of On-chip Interleaved Transformers on RFIC Applications” Department of Electrical Engineering NCKU,Master Thesis,2001
[6] “Miniature 3-D Inductors in Standard CMOS Process” Chih-Chun Tang,Chia-Hsin Wu,Shen-Iuan Liu,IEEE Journal of Solid-State Circuits,VOL. 37,NO.4,April 2002,pp471-480
[7] “Differentially Driven Symmetric Microstrip Inductors” Mina Danesh,John R. Long,IEEE Transactions on Microwave Theory and Technique,VOL. 50,NO.1,January 2002,pp332-341
[8] “Substrate Effects in Monolithic RF Transformers on Silicon” Kiat T. Ng,Behzad Rejaei,Joachim N. Burghartz,IEEE Transactions on Microwave Theory and Technique,VOL. 50,NO.1,January 2002,pp377-383
[9] “On-Chip RF Spiral Inductors and Bandpass Filters Using Active Magnetic Energy Recovery” Yi-Cheng Wu,M. Frank Chang,IEEE Custom Integrated Circuits Conference 2002,pp275-278
[10] “A 1V 0.9dB NF Low Noise Amplifier for 5-6GHz WLAN in 0.18μm CMOS” David J. Cassan,John R. Long,IEEE Custom Integrated Circuits Conference 2002,pp419-422
[11] “Stacked Inductors and Transformers in CMOS Technology” Alireza Zolfaghari,Andrew Chan,Behzad Razavi,IEEE Journal of Solid-State Circuits,VOL. 36,NO.4,April 2001,pp620-628
[12] “Monolithic Transformers for Silicon RF IC Design” John R Long,IEEE Journal of Solid-State Circuits,VOL. 35,NO.9,September 2000,pp1368-1382
[13] “Monolithic Transformers and Their Application in a Differential CMOS RF Low-Noise Amplifier” Jianjun J. Zhou,David J. Allstot,IEEE Journal of Solid-State Circuits,VOL. 33,NO.12,December 1998,pp2020-2027
[14] “The Modeling,Characterization,and Design of Monolithic Inductors for Silicon RF IC’s” John R. Long,Miles A. Copeland,IEEE Journal of Solid-State Circuits,VOL. 32,NO.3,March 1997,pp357-369
[15] “Design and Modeling of Compact On-Chip Transformer/Balun Using Multi-Level Metal Winding for RF Integrated Circuits ” Tao Liang,John Gillis,Dawn Wang,Paul Cooper,IEEE Radio Frequency Integrated Circuits Symposium 2001,pp117-120
[16] “Analysis,Design,and Optimization of Spiral Inductors and Transformers for Si RF IC’s” Ali Niknejad,Robert G. Meyer,IEEE Journal of Solid-State Circuits,VOL. 33,NO.10,October 1998,pp1470-1481
[17] “On-Chip Spiral Inductors with Patterned Ground Shield for Si-Based RF IC’s” C. Patrick Yue,S. Simon Wong,IEEE Journal of Solid-State Circuits,VOL. 33,NO.5,May 1998,pp743-752
[18] “A Q-Factor Enhancement Technique for MMIC Inductors” Mina Danesh,John R. Long,R. A. Hadame,IEEE Radio Frequency Integrated Circuits Symposium 1998,pp217-220
[19] “Microwave inductors and capacitors in standard multilevel interconnect silicon technology” J. N. Burghartz,M. Soyuer,K. A. Jenkins,IEEE Transactions on Microwave Theory and Technique,VOL. 44,NO.1,January 1996,pp100-104
[20] “Symmetric 3-D Inductors,Transformers,and Balun” W-Z Chen,W-H Chen,U.S. and R.O.C. patent pending.
[21] “Modeling of Silicon-Compatible On-Chip Inductors” Behnam Mohammadi,Term Paper
[22] “On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits” Chik Patrick Yue,Department of Electrical Engineering Stanford University,Doctor Thesis,1998
[23] “A 2.4GHz Frequency Synthesizer in 0.6μm CMOS” Alexandre Rudolf Kral,Department of Electrical Engineering University of California Los Angeles,Master Thesis,1998
[24] “方形螺旋電感器的模擬與量測” IC Design Magazine,August 2001,pp22-47
[25] “A Direct Conversion CMOS Transceiver for IEEE 802.11a WLANs” Pengfei Zhang,Thai Nguyen,Chris Lam,Doug Gambetta,Chet Soorapanth,Baohong Cheng,Siegfried Hart,Isaac Sever,Taoufik Bourdi,Andrew Tham,Behzad Razavi,IEEE International Sold-State Circuits Conference 2003,pp354-355
[26] “Analysis and Design of a 1.8-GHz CMOS LC Quadrature VCO” Pietro Andreani,Andrea Bonfanti,Luca Romano,Carlo Samori,IEEE Journal of Solid-State Circuits,VOL. 37,NO.12,December 2002,pp1737-1747
[27] “Tail Current Noise Suppression in RF CMOS VCOs” Pietro Andreani,Henrik Sjoland,IEEE Journal of Solid-State Circuits,VOL. 37,NO.3,March 2002,pp342-348
[28] “On the Use of MOS Varactors in RF VCO’s” Pietro Andreani,Sven Mattisson,IEEE Journal of Solid-State Circuits,VOL. 35,NO.6,Iune 2000,pp905-910
[29] “Concepts and Methods in Optimization of Integrated LC VCOs” Donhee Ham,Ali Hajimiri,IEEE Journal of Solid-State Circuits,VOL. 36,NO.6,June 2001,pp896-909
[30] “Design Issues in CMOS Differential LC Oscillators” Ali Hajimiri,Thomas H. Lee,IEEE Journal of Solid-State Circuits,VOL. 34,NO.5,May 1999,pp717-724
[31] “A 6.5GHz Monolithic CMOS Voltage-Controlled Oscillator” Ting-Ping Liu,IEEE International Sold-State Circuits Conference 1999,pp404-405
[32] “A General Theory of Phase Noise in Electrical Oscillators” Ali Hajimiri,Thomas H. Lee,IEEE Journal of Solid-State Circuits,VOL. 33,NO.2,February 1998,pp179-194
[33] “A Study of Phase Noise in CMOS Oscillators” Behzad Razavi,IEEE Journal of Solid-State Circuits,VOL. 31,NO.3,March 1996,pp331-343
[34] “A 2-GHz Low-Phase-Noise Integrated LC-VCO Set with Flicker-Noise Upconversion Minimization” Bram De Muer,M. Borremans,M. Steyaert,G. Li Puma,IEEE Journal of Solid-State Circuits,VOL. 35,NO.7,July 2000,pp1034-1038
[35] “A 1.8GHz highly-tunable low-phase-noise CMOS VCO” Bram De Muer,Nobuyuki Itoh,Marc Borremans and Michiel Steyaert,IEEE Custom Integrated Circuits Conference 2000,pp585-588
[36] “A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors” Jan Craninckx,Michiel S. J. Steyaert,IEEE Journal of Solid-State Circuits,VOL. 32,NO.5,May 1997,pp736-744
[37] “A Low-Noise Transformer-Based 1.7GHz CMOS VCO” Matt Straayer,Jose Cabanillas,Gabriel M. Rebeiz,ISSCC 2002
[38] “A 5.8 GHz Fully Integrated Low Power Low Phase Noise CMOS LC VCO for WLAN Applications” Jishnu Bhattacharjee,Debanjan Mukherjee,Edward Gebara,Sebastien Nuttinck,Joy Laskar,IEEE Radio Frequency Integrated Circuits Symposium 2002,pp475-478
[39] “Phase Noise Analysis of an Integrated Voltage-controlled Oscillator with a Novel Graphical Optimization Method” Ming-Chun Su,Chia-Wei Wu,Klaus Yung-Jane Hsu,IEEE AP-ASIC 2002
[40] “A Filtering Technique to Lower LC Oscillator Phase Noise” Emad Hegazi,Henrik Sjoland,Asad A. Abidi,IEEE Journal of Solid-State Circuits,VOL. 36,NO.12,December 2001,pp1921-1930
指導教授 劉建男(Chien-Nan Liu) 審核日期 2003-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明