博碩士論文 90522012 詳細資訊


姓名 郭廖軒(Liao-Shuang Kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以網域名稱伺服器為基礎之色情網站過濾系統
(A DNS Based Pornographic Web Sites Filtering System)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著WWW的普及,資訊的散佈非常迅速,對知識的累積有很正面的幫助,然而Web上的各種資訊也衍生出負面的問題,就是越來越多不當資訊充斥其間,例如色情圖片與粗暴文字。本論文主要分析如何以色情網站阻擋進行不當資訊防治,同時根據TANet現狀,提出整合網路代理伺服器及網域名稱系統過濾色情資訊的策略,達到可擴充大小(scalable)的網頁過濾架構與分流管制功能。由於網域名稱系統是利用雜湊表記載,詢問快速,加上網域名稱的快取機制,所以過濾系統能夠快速的作出決定,網頁存取延遲時間比傳統產品短,系統耗費資源也很低;本架構可輕易擴充,提供攔截站專業進行網頁分級,而非完全攔阻。另外被攔阻網頁、檔案可利用快取再利用,有效的降低頻寬的需求。
另外由於色情網站的變動性很大,每天都有新的色情網站,固此本系統需要建立精準及完整的管制名單,根據色情網站的特徵,本論文提出三種管制名單更新及建立的方法,第一種 ”Monitor DNS traffic analysis”,是利用網域名稱與色情關鍵字的關係,第二種 ”Pornographic network group links analysis”, 是利用色情網站互相連結的特性。經過評估兩種方法辦認色情網站的精準度皆可達到九成以上,處理速度也比現有方法快上許多,目前在我們已經收集十萬個色情網站的名單,另外我們提出了第三種 ”Proxy access log mining”,可補前兩種方法之不足。同時本系統也安裝於桃園區網中心進行管制。
摘要(英) With the popularity of WWW, fast information distribution greatly speed up the aggregation of knowledge. However, a variety of information on Web pages produces an unexpected problem-abusing information distribution, such as adult and violence. The article addresses how to find out adult contents on Internet and to avoid accessing them by a scalable simple approach. Considering the operation of TANet, we propose DNS-based with proxy approaches to filter abusing information. The approaches utilize existing domain name software as a special server. There is no extra load on the filtering system. Also, because of DNS’s cache mechanism, filtering system can make faster blocking decision.
Pornographic web sites appear and disappear everyday, so it is hard to keep the blocking list up-to-date. We use the pornographic web sites’ feature to propose three kinds of update blocking list methods. The first one is ”Monitor DNS traffic analysis”. Some web sites with keywords in their hostnames is the principle. Besides, the pornographic web sites always link each other. So, we proposed the second method - ”Pornographic network group links analysis”. These methods have higher precision over than 90%. And they have less processing time. Now, we have collected more than 100,000 web sites.
Finally, we implemented a prototype to demonstrate our approaches. The system was installed at National Central University in Taoyuan to test its effect. The experiment shows that our system effectively blocks the retrieval to abusing information. Because of the great effect, many other institutions joint to our system and inform us to adopt the system.
關鍵字(中) ★ 網路代理伺服器
★ 網域名稱伺服器
★ 不當資訊攔阻
關鍵字(英) ★ domain name system
★ information filtering
★ proxy server
論文目次 摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第1章 緒論 1
第2章 不當資訊的防治策略 5
2.1收集可疑的不當資訊 5
2.2分析判斷不當資訊 6
2.2-1影像分析 7
2.2-2文字分析 7
2.2-3 PICS (Platform for Internet Content Selection ) 標籤 12
2.2-4影像分析與文字分析綜合比較 13
2.3攔阻策略 15
2.3-1黑名單阻擋 (Blocking List) 16
2.4攔阻點的配置 17
2.5過濾方法相關學術研究 18
第3章 系統設計 22
3.1過濾系統架構設計 22
3.2問題討論 28
3.3 可擴充性架構 29
3.4黑名單更新設計 29
第4章 系統實作及測試 36
4.1過濾系統實作 36
4.2過濾系統評估與討論 39
4.3更新黑名單方法實作與評估 42
4.3-1 DNS traffic monitor方法實作與結果評估 42
4.3-2 Pornographic network groups similarity方法實作與結果評估 45
4.4更新黑名單方法試結果討論 48
第5章 結論及未來工作 50
5.1結論 50
5.2未來工作 51
參考文獻 52
參考文獻 [1] http://dir.salon.com/sex/world/2000/06/19/nasa/index.html
[2] http://ir.csie.ncku.edu.tw/Project/researchAchievement3.htm
[3] http://www.w3.org/PICS/
[4] Calamaris, http://cord.de/tools/squid/calamaris/Welcome.html.en
[5] Dr. Pornographic Image GateLocker
[6] IMira Screening, http://www.ulead.com.tw/es/imscreening/runme.htm
[7] Microsystems Software, ”CyberPatrol”, http://www.microsys.com/cyber/default.htm
[8] NoPorn, http://www.noporn.com.tw/
[9] Recreational Software Advisory Council, http://www.rsac.org
[10] SafeSurf, http://www.safesurf.com/.
[11] Solid Oak Software, ”CyberSitter”, http://www.solidoak.com/cybersit.htm
[12] Squid, http://www.squid-cache.org
[13] SquidGuard, http://www.squidguard.org/
[14] PORNsweeper, http://www.mimesweeper.com/products/msw/pornsweeper/
[15] Marchiori A., Brodley C., Dy J., Pavlopoulou C., Kak A., Broderick L., Aisen A.M., ”CBIR for medical images - an evaluation trial ,” IEEE Workshop on Content-Based Access of Image and Video Libraries, pp.89-93, 2001
[16] I. Anagnostopoulos, G. Kouzas, C. Anagnostopoulos, D. Vergados, I. Papaleonidopoulos, A. Generalis, V. Loumos and E. Kayafas, ”Automatic web site classification in a large repository under information filtering and retrieval techniques,” Electrotechnical Conference of 11th Mediterranean, pp. 279 -283, 2002.
[17] Wayne B. Salamonsen, Roland Yeo, ”PICS-Aware Proxy System Versus Proxy Server Filters,” Proceedings of INET’97 on Internet Society
[18] Chen Ding, Chi-Hung Chi, Jing Deng, Chun-Lei Dong, ”Centralized content-based Web filtering and blocking: how far can it go?, ”Proceedings of IEEE SMC 99’ Conference, Volume: 17, pp. 48 -57,2002
[19] Feng Jiao, Wen Gao, Lijuan Duan and Guoqin Cui, ”Detecting adult image using multiple features, ”Proceedings of International Conferences on Info-tech and Info-net, Volume: 3, pp378-383, 2001.
[20] Pieper J., Srinivasan S., Dom B., ” Streaming-media knowledge discovery,” Computer, Vol. 34, pp.68-74, 2001
[21] Rose J., Shah M., ”Content-based image retrieval using gradient projections ,” Proceedings of Southeastcon '98 on IEEE, pp. 118-121, 1998
[22] J.M. Balkin, Beth Simone Noveck, Kermit Roosevelt, ”Filtering the Internet:A Best Practices Model,” 1999
[23] Hoashi K., Inoue, N., Hashimoto, K., ”Data collection for evaluating automatic filtering of hazardous WWW information ,”Internet Workshop on IEEE, pp. 157 -164, 1999
[24] Ki-Wook Kim, Ki-Byoung Kim, Hyoung-Joo Kim, ” VIRON: an annotation-based video information retrieval system,” Proceedings of Computer Software and Applications Conference, pp.298-303, 1996
[25] Andrei Popescu's , ”Implementation of term weighting in a simple IR system,”,
[26] D. Smith, R. Harvey, Yi Chan and Bangham J.A, ”Classifying Web pages by content,” IEE European Workshop on Distributed Imaging, 1999.
[27] Patrick S. Chen, ”An Automatic System for Collecting Crime Information on the Internet , ” Journal of Information, Law and Technology
[28] Lee P.Y, Hui S.C., Fong A.C.M., ”Neural networks for web content filtering ,” IEEE Intelligent Systems, Volume: 17, pp. 48 -57,2002
[29] 林承宇, ”網際網路上「有害資訊內容」之探討─以我國法律管制可行性為中心,” 國立政治大學廣電研究所, 民89。
[30] 終止童妓協會Web547, http://www.web547.org.tw
指導教授 曾黎明(Li-Ming Tseng) 審核日期 2003-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡