博碩士論文 90522041 詳細資訊


姓名 郭家豪(Jia-Hau Guo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 背光影像補償及色彩減量之研究
(The Study of Exposure Compensation for Backlight Images and Color Reduction)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,隨著電腦科技的日新月異,彩色影像在數位科技中佔有很重要的地位。因此,如何有效的處理彩色影像便成為重要的研究課題,本論文提出兩種有關彩色影像的處裡技術。
目前數位像機提供了許多有效且特殊的功能,如自動對焦、濾鏡、自動曝光…等,使得使用者可以輕易的在任何拍攝狀況中能輕易的拍攝到好照片,但不可否認的,使用者仍然有機會可以拍攝到背光影像,本篇論文針對背光影像提出了一個與物體位置無關新的演算法。為了達到補償的目的,首先使用了Fuzzy C-means演算法來對背光影像做分割來擷取特徵,然後將這些特徵做為輸入SOM-based fuzzy system,來決定背光影像的補償值,最後我們收集26張背光影像來測試本演算法的效能。
在第二部分中,提出了一個以區域為基礎的色彩減量演算法,在我們的方法中,一個附加的3D值方圖首先被計算,然後此排序過的值方圖,經過區域的增長以及聚合的過程,來獲得每個區域所分配到的量化後色彩個數,將計算後的個數輸入K-means演算法來產生最終的量化後顏色,然後在將影像中像素根據所分配到的群聚來做對應。最後我們將數種實驗結果以及結果的比較來評估所提出的演算法效能。
摘要(英) In recent years, color images occupy an extensive area of the information used in computer technology. Therefore, how to efficiently process color images becomes a demanding task. In this thesis, two algorithms for processing color images are proposed.
Most of digital cameras have many appealing features, such as auto focus, auto exposure, etc, which enable user to easily take good pictures under various shot conditions, users still have chances of getting backlight images. This paper presents a new algorithm for compensating exposure in the case of backlighting, regardless of the position of objects. To achieve this compensation, the fuzzy C-means algorithm is first used to extract features from a backlight image. Then these extracted features are input into an SOM-based fuzzy system to determine the amount of compensation. A set of 26 images were tested to illustrate the performance of the algorithm.
In the second part of the thesis, A region based color reduction algorithm is proposed. In this algorithm, a superposed 3D histogram is first calculated. Then the sorted histogram list will be fed into a region- growing-and-merging-algorithm to determine the number of quantized color for each region. By using the computed numbers, the K-means algorithm is employed to extract the palette colors. Several experimental and comparative results illustrate the performance of the proposed algorithm.
關鍵字(中) ★ 直方圖均衡
★ 模糊群聚演算法
★ 自我組織特徵映射
★ 色彩量化
關鍵字(英) ★ color quantization
★ clustering
★ image enhancement
★ histogram equalization
論文目次 圖目錄 II
表目錄 III
表目錄 III
第一章 序論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 背光影像自動補償 4
2.1 研究動機 4
2.2 背光影像自動補償演算法 8
2.2.1 色彩空間 9
2.2.2 背光影像補償 12
2.2.3 以自我組織映射圖為基礎的類神經模糊系統 16
2.3 實驗結果 23
第三章 色彩減量 29
3.1 研究動機 29
3.2 文獻探討 32
3.3 區域為基礎的色彩減量演算法 35
3.3.1 區域增長 36
3.3.2 聚合演算法 44
3.3.3 分群與像素的對應 47
3.4 實驗結果 51
第四章 結論與展望 61
第五章 參考文獻 63
參考文獻 [1] I. Ashdown,”Octree color quantization,”in Radiosity-Aprogrammer’s Perspective. New York: Wiley, 1994.
[2] I. Ashdown, “Octree color quantization,” in Radiosity-A Programmer’s Perspective. New York: Wiley, 1994.
[3] J. C. Bezdek, Fuzzy mathematics in pattern classification, Ph.D Thesis, Cornell University, 1973.
[4] G. Boccignone, “A multiscale contrast enhancement method,” in Proc. Int. Conf. Image Processing, pp. 306-309, 1997.
[5] J. M. Buhmann et al., “Dithered color quantization,” in Proc. EUROGRAPHICS, vol. 17, no. 3, Lisboa, Portugal, Computer Graphics Forum, 1998, pp. 219-231
[6] V. Caselles, J. L. Lisani, J. M. Morel, and G. Sapiro, “ Shape preserving local contrast enhancement,” in Proc. Int. Conf. Image Processing, pp. 314-317, 1997.
[7] A. J. Dekker, “Kohonen neural networks for optimal color quantization, ” Network: Computat. Neural Syst., vol. 5, pp. 351-367, 1994.
[8] A. H. Dekker, “Kohonen neural networks for optimal color quantization,” Network: Computat. Neural Syst., vol. 5, pp. 351-367, 1994.
[9] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters,“ Journal Cybern., vol. 3, no. 3, pp. 35-57, 1973.
[10] Y. Deng, B. S. Manjunath and Hyundoo Shin. Color image segmentation. IEEE Computer Society Conference on Computer Vision and Pattern, 2:446-451,1999
[11] B. Fritzke, “Growing cell structures-a self-organizing network for unsupervised and supervised learning,”Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.
[12] M. Gervautz and W. Purgathofer, :A simple method for color quantization: Octree quantization, in Graphics Gems, A. S. Glassner, Ed. New York Academic, 1990, pp. 287-293.
[13] M. Gervautz and W. Purgathofer, “A simple method for color quantization: Octree quantization.” In Graphics Gems, A. S. Glassner, Ed. New York: Academic, 1990, pp. 287-293.
[14] R. C. Gonazlez and R. E. woods, Digital image processing, 2nd. Addison-wesley, 1992.
[15] T. Haruki and K. Kikuchi, “Video camera system using fuzzy logic,” IEEE Transactions on Consumer Electronics,Vol.38, No.3 , pp.624-634, Aug. 1992.
[16] P. Heckbert , “Color image quantization for frame buffer display,” Comput. Graph,. Vol. 16, pp. 297-307, 1982.
[17] P Heckbert, “Color image quantization for frame buffer display,” Comput. & Graph., vol. 16, pp. 297-307,1982.
[18] I. S. Hsieh and K. C. Fan, “An adative clustering algorithm for color quantization,” Pattern Recognit. Lett., vol. 21, pp. 337-346, 2000.
[19] J. Q. Huang, New Technique for Digital Backlight Image Compensation, MS Thesis, Department of Computer Science and Information Engineering, Chung Hua University, ROC , Jun 2001.
[20] R. Hummel, “Image enhancement by histogram transformation,” Comp. Graph. Image Process., vol. 6, pp. 184-195, 1977.
[21] A. K. Jain, “Fundamentals of digital image processing,” Englewood Cliffs, NJ: Prentice-Hall, 1989.
[22] G. Joy and Z. Xiang, “Center-cut for color image quantization,” The Visual Computer vol. 10, pp. 62-66,1993.
[23] Y. P. Jun, H. Yoon, J. W. Cho, “L*learning: a fast self-organizing feature map learning algorithm based on incremental ordering,” IEICE Transactions on Information & Systems, vol. E76, no. 6, pp.698-706, 1993.
[24] D. J. Ketcham., R. Lowe, and W. Weber, “Seminar on image processing,” in Real-Time Enhancement Techniques, 1976, pp. 1-6. Hughes Aircraft.
[25] Y. T. Kim, “Contrast enhancement using brightness preserving bi-his togram equalization,” IEEE Trans. Consumer Electron., vol. 43 , no. 1, pp. 1-8, Feb. 1997.
[26] T. K. Kim, J. K. Paik, and B. S. Kang, “ Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering,” IEEE Trans. on Consumer Electronics, vol. 44, no. 1, pp. 82-86, Feb. 1998.
[27] J. Y. Kim, L. S. Kim, and S. H. Hwang: “An advance contrast enhancement using partially overlapped sub-block histogram Equalization,” IEEE Tran. on Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 475-484, April 2001.
[28] Y. Linde, A. Buzo and R. Gray, “An algorithm for vector quantizer design,” IEEE Tran. on Commun. COM vol. 28, NO 1, pp. 84-95,1980.
[29] Y. W. Lin and S. U. Lee, “On the color image segmentation algorithm based on the thresholding and the fuzzy C-means techniques,” Pattern Recognit., vol. 23, no. 9, pp. 935-952, 1990.
[30] Z. P. Lo and B. Bavarian, “On the rate of convergence in topology preserving neural networks,” Biological Cybernetics, vol. 65, pp.55-63, 1991
[31] A. Morimura, K. Uomori, Y. Kitamura, A. Fujioka, J.Harada, S. Iwamura and M.Hirota, “A digital video camera system,” IEEE Transactions on Consumer Electronics, Vol. 36, No.4, pp.866-875, Nov. 1990
[32] M. Murakami and N. Honda, “An exposure control system of video cameras based on fuzzy logic using color information,” Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, Vol. 3, 1996
[33] M. T. Orchard and C. A. Bouman, “Color quantization of images,” IEEE Tran. on Signal Processing vol. 39, NO 12, PP. 2677-2690, 1991.
[34] N. Papamarkos, “Color reduction using local features and a SOFM neural network,” Int. J. Imag. Syst. Technol., vol. 10, no. 5, pp. 404-409.
[35] N. Papamarkos, Antonis E. Atsalakis, and Charalampos P. Strouthopoulos, “Adaptive Color Reduction,” IEEE Tran. on Systems, Man and Cybernetics-Part B:Cybernetics, Vol. 32, Feb 2002.
[36] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T.Greer, B. H. Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comp. Vis. Graph. Image Process, Vol. 39, no. 3, pp. 355-368, 1987.
[37] Jan Puzicha and Joachim M.Buhmann. Histogram clustering for unsupervised image segmentation. Proceedings o f the Computer Vision and Pattern Recognition, 2, Jun 1999.
[38] S. Sakaue, A. Tamura, M. Nakayama, and S. Maruno, “ Adaptive garmma processing of the video cameras for the expansion of the dynamic range,” IEEE Trans. Consumer Electron., vol. 41, pp. 555-562, Aug. 1995.
[39] P. Scheunders, “A comparison of clustering algorithms applied to color image quantization,” Pattern Recognit. Lett., vol. 18, pp. 1379-1384, 1997.
[40] P. Scheunders, “A genetic C-means clustering algorithm applied to color image quantization.” Pattern Recognit.,vol.30, no 6, pp. 859-886,1997.
[41] S. Shimizu, T. Kondo, T. Kohashi, M. Tsurata, T. Komuro, “A new algorithm for exposure control based on fuzzy logic for video cameras,” IEEE Transactions on Consumer Electronics, Vol.38, No.3, pp.617-623, Aug. 1992.
[42] M. Stricker and M. Orengo, “Similarity of color images,” in Proc. SPIE Conf. Storage Retrieval for Still Images Video Databases, vol. 2420. SanJose, CA, 1995, pp. 381-392.
[43] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Tran. on Image Processing, vol. 9, no. 5, pp. 889-896, May 2000.
[44] M. C. Su., T. K. Liu, and H. T. Chang, “An efficient initialization scheme for the self-organizing feature map algorithm,” IEEE International Joint Conference on Neural Networks, Washington D.C., 1999.
[45] M. C. Su, Eugene Lai, C. Y. Tew, C. W. Liu, and C. S. Chang, 2001, “Application of SOM-Based Fuzzy Systems in Voltage Security Margin Estimation,” in Journal of Advanced Computational Intelligence, vol. 5, no. 3, pp. 157-162
[46] V. T. Tom and G. J. Wolfe, “ Adaptive histogram equalization and its applications,” SPIE Applicat. Dig. Image Process., vol. 359, pp. 204-209, 1982.
[47] J. T. Tou and R. C. Gonazlez, “Pattern Recognition Principles,” reading MA:Addison-Wesley 1974.
[48] L. Velho, J. Gomes, and M. V. R. Sobreiro, “Color image quantization by pairwise clustering,” in Proc. Tenth Brazilian Symp Comput. Graph. Image Process., L. H. de Figueiredo and M. L. Netto, Eds. Campos do Jordao, Spain, 1997, pp. 203-210.
[49] O. Verevka, “The local K-means algorithm for color image quantization,” M.Sc. dissertation, Univ. Alberta, Edmonton, AB,Canada, 1995.
[50] S. J. Wan, P. Prusinkiewicz, and S. K. M. Wong, “Variance based color image quantization for frame buffer display,” Color Res. Applicat., vol. 15, no. 1, pp. 52-58, 1990.
[51] C. Y. Yang and J. C. Lin, “RWM-cut for color image quantization,” Comput. & Graph., vol. 20 pp. 577-588,1996.
[52] D. X. Zhong and H. Yan. “Color image segmentation using color space analysis and fuzzy clustering,” IEEE Signal Processing Society Workshop, 2:624-633.
[53] J. Zimmerman, S. Pizer, E. Staab, E. Perry, W. McCartney, and B. Brenton, “Evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement,” IEEE Trans. Medical Imaging, pp. 304-312, Dec. 1988.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2003-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡