博碩士論文 90522049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:52.204.98.217
姓名 邱建明(Jen-Min Chiu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 結合影像與文字辨識的網路色情過濾
(Internet Pornography Filtering With Combination ofImage-Based and Text-Based Classification)
相關論文
★ 整合多樣配置組態下的藍芽射頻驗證系統★ 具檔案敘述相關語查詢之智慧型檔案搜尋系統
★ 具遲到者支援功能之網際網路簡報系統★ 以快速廣播法建構熱門視訊隨選服務伺服器
★ 具事件同步再現特性之遠程電傳展示伺服器★ 無線網路環境下之廣播資訊快速下載
★ 中文網站繁簡互訪協助系統★ 支援時光平移播放之調適性現場直播演算法
★ 用於互動式廣播之段落對齊法★ 熱門影片廣播法之影片區段復原機制
★ 配合熱門影片廣播的本地伺服器高效快取法★ 一個增進SIP在防火牆環境中應用的協同模組
★ 考量網頁熱門度之一致性雜湊法解決 網頁代理伺服器之負載平衡★ 以網域名稱伺服器為基礎之色情網站過濾系統
★ 使用熱門廣播法及支援點對點傳輸之影音內容傳遞網路★ 變動頻寬平滑化之熱門廣播演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Internet的蓬勃發展,讓資訊與知識能更廣泛,更有效率地流通。但是方便取得的資訊,也意味著網路上的不當資訊更加地四處橫流;電腦教育的日漸普及,使得越來越多的人可以接觸到網路,對於藉由Internet來擴散的負面題材,例如色情、暴力、吸毒、種族仇恨...等等資訊,將因為未設防的存取環境,而比實體的傳播管道更具穿透力。因此在不妨礙言論自由的範圍內,對於以國中小學教育為主的網路環境所能接取的網站內容,及存取行為施以某種程度的過濾是有必要的。
 
  對於網站過濾方面的研究,應用黑名單其中一種受歡迎的手法,獲得名單的方式則因方法而異。一般來說有可以分為人工檢查、關鍵字分析、程式自動收尋...等等。本文針對色情網站在影像及文字方面的特性,發展出一套綜合的分析方法。在色情圖片方面,利用影像處理及圖樣分析方面的技術:如色彩分析,紋理分析,中軸抽取,Shape From Shading...等技術,來分析影像中是否有膚色色調的區域,以及這些區域是否能代表存在著裸露的人體;在文字方面,則運用資訊檢索和文件分類的手法,測量關於色情方面的關鍵字之數目及出現頻率。最後藉由衡量兩方面所萃取出的特徵向量,計算彼此間的相似性,來對名單作群聚分析的工作,進一步精煉出色情與非色情的網址,來提高名單整體的精確性。
摘要(英) With the explosive growing of Internet, information and knowledge may proliferating wide-spreadly and efficiently. And the computer education is available to all in recent years, let more and more people access varirty material in Internet, But at the same time, it also implyed the flooding of inappropriate Internet content. In the unfortified enviroment, some objectionable topic such as pornography, violence, and hate messages, will penetrate to those who shouldn’t access these web sites. Thus, it is nessessary that apply filting scheme to offensive content, without harmimg to free
speech.
Blacklist is a popular way in current web filtering research, and there are variety collecting method of blacklist, i.e. key word analysis, human inspectnig ...etc.But there are alway some false positive exist. In this paper we develope a compounded method, according to the multiple characteristics of pornography sites in image and text, to refining the blacklist. For erotic images, we use the image processing techniques: color segmentation, coarse detection, median axes extraction, and shape from shading. For text in web document, we use the techniques of Information Retrieval and Document Classification, to measure the number and frequence of erotic key word. After extract two forms of feature vector, we measure the similarity of two document by the angle of their feature vector. Finally, the refining task is cast to the graph partitioning problem, and divide the blacklist into two groups: pornographic site and non-pornographic site.
關鍵字(中) ★ 網站過濾
★ 色情影像偵測
★ 文件分類
關鍵字(英) ★ Pornographic Image Analysis
★ Document Classification
★ Web filtering
論文目次 摘  要 i
Abstract iii
目  錄 v
圖 目 錄 viii
第一章 緒論 1
1.1 研究動機 1
1.3 系統概觀 2
1.3 論文概要 4
第二章 相關研究 5
2.1 人工過濾 5
2.2 分類標籤 5
2.3 網站關聯搜尋 7
2.4 文字為主的過濾(Text-based filtering) 8
2.5 色情影像分析 10
第三章 偵測影像中的裸露人體 12
3.1 膚色區域切割 ( Skin Region Segmentation ) 14
3.2 粗糙度分析 ( Skin Region Segmentation ) 18
3.3 去除雜訊 21
3.4 型態學影像處理 25
3.5 骨架抽取 ( Skeleton Extraction ) 29
3.5 明暗分布 ( Shading ) 32
3.6 色情影像評估 34
第四章 黑名單精煉 35
4.1 網站文件分類 35
4.2 特徵向量 36
4.3 利用圖形分割問題對文件分類 37
4.4 Normalized Cut 38
4.5 Fiedler Vector 39
URL 40
第五章 實作及測試 42
5.1 實作 42
5.2 測試資料 42
5.3 測試結果 43
第六章 結論及未來工作 46
7.1 結論 46
7.2 未來工作 46
參考文獻 48
參考文獻 [1] I. Androutsopoulos, et. al., "An Evaluation of Naive Bayesian Anti-Spam Filtering," in Proc. of the Workshop on Machine Learning in the New Information Age, 11th European Conference on Machine Learning (ECML 2000), pp. 9-17, May 2000.
[2] Arentz, W.A. and Olstad, B., "Classifying offensive sites based on image content", Computer Vision and Image Understanding Journal, No. 1-3, April-June 2004, pp. 295-310.
[3] Bosson, A. and Cawley, G.C. and Chan, Y. and Harvey, R.W., "Non-retrieval: blocking pornographic images", In International Conference on Image and Video Retrieval CIVR-2002, pp. 50-60, 2002
[4] Vittorio Castelli , Lawrence D. Bergman., “Image Databases: Search and Retrieval of Digital Imagery”, 2001
[5] Chan, Y., Harvey, R., Smith, D. ”Building systems to block pornography.” Challenge of Image Retrieval, BCS Electronic Workshops in Computing series (1999) 34—40
[6] Patrick S. Che, “An Automatic System for Collecting Crime Information on the Internet,” Journal of Information, Law and Technology
[7] P.E. Danielson. “Euclidean distance mapping.” Computer Graphics and Image Processing, 13:3:227-248, November 1980
[8] Rongbo Du, Reihaneh Safavi-Naini and Willy Susilo, “Web Filtering Using Text Classification”, 2004
[9] M.M. Fleck, D.A. Forsyth and C. Bregler, “Finding naked people,” Proc. European Conf. on Computer Vision , 1996.
[10] Fleck, Margaret M., 1996, “Practical Edge Finding with a robust estimator,” Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp.649-653
[11] Gary Vanderet, “An Affair of the Mind”, http://www.pbcc.org/sermons/vanderet /1089.pdf ,1997
[12] Th. Gevers, F. Aldershoff, and A. W. M. Smeulders, Classification of Images on Internet by Visual and Textual Information, Internet Imaging, SPIE, San Jose,January, 2000.
[13] Gibson, S. and Harvey, R.W., "Analysing and simplifying histograms using scale-trees", In Proceedings of 11th International Conference on Image Analysis and Processing, Palermo, Italy, 2001
[14] Haddon, J. and Forsyth, D. A. ``Shape representations from shading primitives' 5th European Conference on Computer Vision, Proceedings p.415-31 vol.2., 1998
[15] X. He, H. Zha, C. H. Q. Ding, and H. D. Simon. Web document clustering using hyperlink structures. Computational Statistics & Data Analysis, 41(1):19--45, November 2002.
[16] Hooman Katirai, "Filtering Junk E-Mail: A Performance Comparison between Genetic Programming & Naive Bayes," available online at: http://members.rogers.com/hoomank/katirai99filtering.pdf, Sep. 1999.
[17] R. L. Hsu, M. A. Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696-706, May 2002.
[18] Lee P.Y, Hui S.C., Fong A.C.M., ”Neural networks for web content filtering ,” IEEE Intelligent Systems, Volume: 17, pp. 48 -57,2002
[19] Feng Jiao, Lijuan, Wen Gao, Guoqin Cui. “Detecting Adult Image Using Multiple Features”,ICII 2001: International Conferences on Info-tech & Info-net Oct. 2001(B-024), Beijing,China
[20] S. Paek, C. L. Sable, V. Hatzivassiloglou, A. Jaimes, B. H. Schiffman, S.-F. Chang, K. R. McKeown, “Integration of Visual and Text Based Approaches for the Content Labeling and Classification of Photographs”, ACM SIGIR'99 Workshop on Multimedia Indexing and Retrieval, Berkeley, CA, August 19, 1999.
[21] Rafael C Gonzalez, Richard E. Woods., “Digital Image Processing”
[22] Rongbo Du, Reihaneh Safavi-Naimi, and Willy Susilo, “Web Filtering Using Text Classification”
[23] R. Schettini, G. Ciocca, and S. Zuffi. “A survey of methods for colour image indexing and retrieval inimage databases.”, Color Imaging Science: Exploiting Digital Media.John Wiley, 2001
[24] R. Schettini, C. Brambilla, C. Cusano, G. Ciocca., “On the detection of pornographic digital images”
[25] Shi, J., Malik, J., 1997. Normalized cuts and image segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June. pp. 731–737.
[26] M. C. Shin, K. I. Chang and L. V. Tsap, "Does Colorspace Transformation Make Any Difference on Skin Detection?", IEEE Workshop on Applications of Computer Vision, pages 275-279, Orlando, FL, December 2002
[27] Simmons, M., Sequin,C. H.: “2D Shape Decomposition and the Automatic Generation of Hierarchical Representations”. International Journal of Shape Modeling 4 (1998) 63--78.
[28] Smith, D.J. and Harvey, R.W. and Chan, Y. and Bangham, J. A., "Classifying web pages by content", In IEE European Workshop on Distributed Imaging, vol. 99/109, pp. 8/1-8/7, 1999, Reference No.:1999/109
[29] James Z. Wang, Jia Li, Gio Wiederhold and Oscar Firschein, ``System for Screening Objectionable Images, Using Daubechies’ Wavelets and Color Histograms' Computer Communications, vol. 21, no. 15, pp. 1355-1360, Elsevier, 1998
[30] Richardson C. R, Resnick P. J, Hansen D. L. “Does pornography-blocking software block access to health information on the internet?” JAMA. 2002;288:2887-2894.
[31] Ruo Zhang , Ping-Sing Tsai , James Edwin Cryer , Mubarak Shah, “Shape from Shading: A Survey”, IEEE Transactions on Pattern Analysis and Machine Intelligence, v.21 n.8, p.690-706, August 1999
[32] http://kids.yam.com/
[33] Recreational Software Advisory Council, http://www.rsac.org
[34] Squid Guard, http://www.squidguard.org
[35] SafeSurf, http://www.safesurf.com/
[36] http://www.w3.org/PICS/
[37] http://www.net-protect.org/
[38] http://www.saferinternet.org/
[39] http://yahooligans.yahoo.com/
[40] 郭廖軒,“以網域名稱伺服器為基礎之色情網站過濾系統“,國立中央大學資訊工程學系,民92
[41] 林維德,“色情網頁之偵測與蒐集,國立成功大學資訊工程研究所,民90
[42] 視覺素描研究所,”藝用解剖學”,藝術圖書公司,民76
[43] 魏道慧,”人體結構與藝術構成”,民81
[44] Lawrence Lessig, CODE and Othre Laws of Cyberspace. 劉靜宜譯(2002):《網路自由與法律》。台北:商周出版。
[45] http://ir.csie.ncku.edu.tw/Project/researchAchievement3.htm,台灣學術網路上不當資訊防制及搜尋機制
指導教授 曾黎明(Li-Ming Tseng) 審核日期 2004-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明