博碩士論文 90532013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:34.231.247.139
姓名 蕭宋榮(Sung-Jung Hsiao)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 即時網路圖形搜尋系統
(Real-Time Web-Based Searching System of Pattern Recognition)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 綱路的圖形辨識對於跨平台的網際網路而言,是一種創新的方法。這個研究是使用聯想記憶的方式來做圖形辨識的工作,此系統為及時的主從架構式網路圖形辨識系統。
  遠端的使用者能夠藉由瀏覽器的操作,來畫出工業元件的外型或字元,然後辨識系統能夠透過網際網路進行資料庫搜尋。伺服器端包含了儲存範例圖形的資料庫。在訓練時期,使用者能夠指定任何的圖形去做及時的處理。圖形是被記錄在伺服端資料庫。在回憶時期,一個創新的資料庫比對方法被提出。這個方法能有效的解決RNN出現虛假狀態的問題,資料庫比對的技術克服了RNN容量限制的問題。在這個新的方法中,WBPR系統分割在伺服端資料庫內的圖形記錄集,然後分別算出它們每一個分割段的W與θ值。
  WBPR系統最後去處理每一分段的圖形辨識的工作。針對網路的圖形辨識技術,論文中有兩個模擬的實驗是被清楚的討論。第一個實驗是一些字元的辨識,第二個實驗是有關Yang-Fen自動化工程公司之工業元件圖形的辨識。這個工業元件的圖形辨識實驗,執行了四個月,該公司的工程師操作了這個網路圖形辨識系統。因此合作的計劃也將在此分析與討論。最後,這個論文也提出創新的圖形辨識方法與傳統文字輸入搜尋方法的比較。
摘要(英) Web-based pattern recognition (PR) is a novel method for multi-platform in real-time Internet. This study attempts to use associative memory to apply pattern recognition technology to the real-time pattern recognition in a web-based recognition system with a Client-Server network structure. Remote user can draw the shape of the engineering components or characters using the browser, and the recognition system then searches the database via the Internet. The server-end includes databases for storage of a sample pattern. With training, the user can assign any pattern to what in real-time. The pattern is recorded in the server-end databases. With respect to retrieval tasks, a novel PR method is proposed that depends on matching databases. The method can efficiently solve the problem of spurious states from recurrent neural network (RNN) in the Web-based PR (WBPR) system. Database matching overcomes the capacity restrictions on RNN. In the new approach, the WBPR system divides the set of records in the server-end databases, and determines W and
關鍵字(中) ★ 網路搜尋
★ 即時搜尋系統
★ 圖形識別
關鍵字(英) ★ real-time
★ pattern recognition
★ web-based
論文目次 Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Related Works 2
1.3 Overview of the Thesis 3
1.4 Organization of the Thesis 4
Chapter 2. Parallel Computing and System Analysis 5
2.1 Introduction of system structure and computing 5
2.2 Storage Phase 8
2.3 Retrieval Phase 12
Chapter 3. Establishing and managing the pattern database 14
Chapter 4. Storage Capacity Analysis and Improvement 18
4.1 Dynamic equation and stable analysis 18
4.2 Process of Improvement 22
Chapter 5. Implementing the Web-Based pattern
recognition system 25
5.1 Recognition of characters and industrial component pattern 25
5.2 Recognition process 29
5.3 Experiment Result 32
5.4 Cooperative example 35
5.5 Traditional Methods Compare with Innovative Methods 39
5.6 Algorithm Analyses 41
Chapter 6. Conclusions and Future Works 45
References 47
參考文獻 [1] Singh S., “A Long Memory Pattern Modeling and Recognition System for Financial Forecasting”. Pattern Analysis and Applications, vo1.2, no.3, 1999,pp.264-273.
[2] Kak S., “Better Web Searches and Prediction with Instantaneously Trained Neural Networks”. IEEE Intelligent Systems, vo1.14, no.6, 1999, pp.78-81.
[3] Duin R.P.W., “Superlearning and neural network magic”. Pattern Recognition Letters, vol.15, 1994, pp.215-217.
[4] Kraaijveld M.A. and Duin R.P.W., “The effective capacity of multilayer feedforward network classifiers”. in Proc.12th Int’l Conf. on Pattern Recognition.( ICPR 94), Israel, vol.B,1994,pp.99-103.
[5] TAN Z. and ALI M.K., “Pattern recognition with stochastic resonance in a generic neural network”. International Journal of Modern Physics C, vo1.11, no.8, 2000, pp.1585-1593.
[6] Perus M., “Neural networks as a basis for quantum associative networks”. Neural Network World, vol.10, no.6, 2000, pp.1001-1013.
[7] Brouwer R.K., “An Integer Recurrent Artificial Neural Network for classifying Feature Vectors”. International Journal of Pattern Recognition and Artificial Intelligence, vol.14, no. 3, 2000, pp.339-335.
[8] Brouwer R.K., “A Fuzzy Recurrent Artificial Neural Network for Pattern classification”. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vo1.8, no.5, 2000, pp.525-538.
[9] Kamp, Y. and Hasler, M., Recursive Neural Networks for Associative Memory: Wiley-Interscience Series in Systems and Optimization, England, 1990, pp.10-34.
[10] Gimenez V., Aslanyan L., Catellanos J., and Ryazanov V. , “Distribution Functions as Attractor for Recurrent Neural Networks”. Pattern Recognition and Image Analysis. vol. 11, no. 3, 2001, pp. 492-497.
[11] Hopfield J.J., “Neural networks and physical systems with emergent collective computational abilities”. Proc. the National Academy of sciences, USA, vol. 79, 1982, pp.2554-2558..
[12] Simon Haykin, Neural networks a comprehensive foundation, 2n. Macmillan College Publishing Company, Inc., New York, 1999.
[13] Hopfield J.J. and Tank D.W., “Computing with neural circuits: a model”, Science, vol.233, 1986, pp. 625-633.
[14] Mueller B., Reinhardt J., and Strickland M. T., Neural Networks, Springer-Verlag, Berlin Heidelberg, 1995.
[15] Zurada, J.M., Artificial Neural Systems, West Publishing, St. Paul, UN. , 1992.
[16] Lippmann, R.P., “An Introduction to Computing with Neural Nets”. IEEE ASSP Mag., 1987, pp.4-22, also reprinted in neural networks: Theoretical Foundations and Analysis, edited by C. Lau, IEEE Press, New York, 1992, pp.5-23.
[17] Little W. A. and Shaw G. L., “Analytical study of the memory storage capacity of a neural network”. Mathematical Biosciences, vo1.39, no.1, 1978, pp.281-290.
[18] Simon Haykin, Neural networks a comprehensive foundation, Macmillan College Publishing Company, Inc., New York, 1994.
[19] Jinwen.Ma, “A Neural Network Approach to real-time pattern recognition”. International Journal of Pattern Recognition and Artificial Intelligence, vol.15, no. 6, 2001, pp. 934-947.
[20] Ma, J.W., “The stability of the generalized Hopfield networks in randomly asynchronous mode”. Neural Networks, vol.10, no.6, 1997, pp.1109-1116.
[21] McEliece R.E., Posner E.C., Rodernich E.R. and VenKatesh S.S., “The capacity of the Hopfield associative memory”. IEEE Trans. Inform. In.IT, vol.33, no.2, 1987, pp.461-483.
[22] Abbott L.F. and Kepler T.B., “Optimal learning in neural network memories”. J.Phys. A:Math. General, vol.22, 1989, pp.711-717.
[23] Venkatesh S.S. and Pitts D., “Linear and logarithmic capacities in associative memory”.IEEE Trans. Inform. Th. IT, vol.35, 1989, pp.558-568.
[24] Amit D.J., Modeling Brain Function: The World of Attractor Neural Networks, Cambridge University Press, Net York, 1989.
[25] Culler D. E., Singh J. P., and Gupta A.. Parallel Computing Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.
[26] Kenkat N. Gudivada, Vijay V Raghavan, William I. Grosky, and Rajesh kasanagottu. Information retrieval on the World Wide Web. IEEE Internet Computing, vol.1, no.5, September - October 1997, pp.58-68.
[27] Steve Lawrence and Lee Giles C.. Searching the World Wide Web. Science, no.280, 1998, pp.98-100.
[28] Steve Lawrence and Lee Giles C.. Searching the Web: General and scientific information access, IEEE Communication, vol.37, no. 1, 1999, pp. 116-122.
[29] Hongjun Lu and Ling Feng. Integrating database and World Wide Web technologies. World Wide Web, vol. 1, no. 2, 1998, pp. 73-86.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2003-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明