博碩士論文 90541012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.135.217.228
姓名 尚立人(Li-Zen Shang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 感應馬達伺服驅動系統之直接轉矩控制策略 研究
(Direct Torque Control Strategy Design of Induction Motor Servo Driver System )
相關論文
★ 感光式觸控面板設計★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面
★ 單級式直流無刷馬達系統之研製★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 單級高功因LLC諧振電源轉換器之研製
★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面
★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號★ 明暗閃爍視覺誘發電位於遙控器之應用
★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在研究感應馬達在直接轉矩控制上,馬達在低轉速之電磁轉矩不足與磁通估測誤差大,以及直接轉矩控制法造成馬達運轉時產生轉矩連波等問題,提出濾波器回授、磁通補償與固定磁通變量直接轉矩控制(fixed flux variation DTC)法以降低磁通估測誤差,並使其在低速時能提升輸出電磁轉矩,降低轉矩漣波的策略,減少電流諧波量與功率消耗使馬達運轉更平順,有效降低速度誤差並提高驅動器效能。
首先,針對直接轉矩控制,提出對傳統直接轉矩之磁通估測器的改善方法與改善馬達在低轉速之電磁轉矩不足。主要是因馬達於低轉速時,轉子磁通變化緩慢,若定子磁通仍操作於定磁通情況下,將使定子磁通無法達到有效控制,進而使馬達輸出之電磁轉矩降低、速度誤差大,本文提出提升定子磁通量之補償策略,使其在低速時能有效輸出電磁轉矩,降低速度誤差。其次,對於直接轉矩控制於馬達運轉時,傳統直接轉矩控制法的輸出方式係經由電壓向量表的選擇,輸出適當的電壓向量,此種切換方式無法使功率晶體切換出非常滑順的弦波電壓使得電壓向量間的切換過程中導致轉矩漣波產生,造成高噪音與振動較難於應用於高精密控制,提出固定磁通變量直接轉矩控制FFVDTC設計法則,利用space vector plus width modulation (SVPWM)合成所需電壓向量,控制轉矩輸出大小與磁通增量在一定範圍內以降低轉矩瞬間變量,有效降低馬達運轉時所產生的轉矩漣波。
論文中所提出的方法,經由MATLAB模擬軟體重新建置馬達與控制系統模型,利用模擬驗證其可行後,再以固定點式DSP-based硬體實際測試結果,來證明其性能與效果,藉以佐證出所提出之直接轉矩控制感應馬達驅動系統於工業應用價值。
摘要(英) The purpose of this dissertation is to investigate a novel direct torque control for induct motor. There are drawbacks of direct torque control method for induct motor. These problems include the insufficiency of electromagnetic torque and the large estimated error of magnetic flux while motor operated in low speed, and generating torque ripples. This dissertation provided filter feedback, magnetic flux compensation and fixed flux variation direct torque control method to reduce the estimated error of magnetic flux; furthermore, it provided a strategy of effectively producing the output electromagnetic torque while the motor operated in low speed. Motor could be operated more smoothly by reducing current harmonic waves and power consumption. It could effectively decrease speed error and improve the efficiency of driver.
First, a method is provided to modify the magnetic flux estimator of the traditional direct torque control and improve the insufficiency of electromagnetic torque while motor operated in low speed. It is because that the rotor flux changes slowly while motor operated in low speed. If the stator flux is still operated in the fixed flux, the stator flux will not be able to control effectively which may decrease the output electromagnetic torque and increase the speed error. This paper provides a method to raise the stator flux which makes it effectively produce electromagnetic torque in the low speed and reduces the speed error.
Second, applying the traditional direct torque control for the motor operation is to select a vector from the list of voltage vector table. This traditional method is not able to geverate a smooth sine wave voltage. Thus it produces torque ripples during the process of switching over between voltage vectors. Torque ripples cause high noise and oscillation. Then it is difficult to apply in the high-accuracy control. This dissertation provides fixed flux variation DTC method which uses the space vector plus width modulation (SVPWM) to compose of the voltage vectors. It effectively reduces the torque ripples during the motor operation.
Finally MATLAB simulation software is used to show the possibility of control system. Then it is demonstrated through the fix-point DSP-based hardware. Both simulation and experimental results verify the feasibility of the new-type direct torque control for induct motor drive system.
關鍵字(中) ★ 固定磁通變量直接轉矩控制
★ 轉矩漣波
★ 定子磁通量補償
★ 磁通估測器
★ 直接轉矩控制
★ 感應馬達
關鍵字(英) ★ induction motor
★ direct torque control
★ flux estimator
★ flux compensated
★ torque ripple
★ fixed flux variation direct torque control
論文目次 ABSTRACT Ⅰ
CONTENT CAPTIONS Ⅲ
FIGURES CAPTIONS Ⅵ
TABLES CAPTIONS ⅩⅠ
NOMENCLATURE ⅩⅡ
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Survey of Previous Work 2
1.3 Main Task and Organization 4
CHAPTER 2 DYNAMIC ANALYSIS OF INDUCTION MOTOR 7
2.1 Introduction 7
2.2 Dynamic Model 8
2.3 Characteristic Analysis 13
2.3.1 Characteristic Analysis 13
2.3.2 Electromagnetic Torque and Flux Command 18
CHAPTER 3 DESIGN OF INVERTERS 19
3.1 Introduction 19
3.2 Structure of The Hardware 21
3.2.1 Power Input Filter Circuit 24
3.2.2 Switching Power Supply Circuit 26
3.2.3 Digital Signal Processor 28
3.2.4 Current Sensor Circuit 29
3.2.5 Phototransistor Coupler Isolation and Drive Circuit 32
3.2.6 Filter Circuit of Encoder Signal 35
3.2.7 Signal Output Circuit 37
3.3 System Survey 38
3.4 Software Design Procedure 40
CHAPTER 4 DIRECT TORQUE CONTROL 43
4.1 Introduction 43
4.2 Direct Torque Control 43
4.3 Control of Flux and Torque 47
4.3.1 Flux Control 48
4.3.2 Electromagnetic Torque Control 49
4.3.3 Select of Voltage Vector 51
4.4 Simulation and Experimental Results 54
4.4.1 Simulation Results 57
4.4.2 Experimental Results 64
4.5 Summary 70
CHAPTER 5 FLUX COMPENSATED DIRECT TORQUE CONTROL FOR LOW SPEED OPERATION 71
5.1 Introduction 71
5.2 Flux Compensated for Low Speed 72
5.3 Integration Algorithm for Estimating Stator Flux 78
5.4 Simulation and Experimental Results 82
5.4.1 Simulation Results 85
5.4.2 Experimental Results 87
5.5 Summary 93
CHAPTER 6 TORQUE RIPPLE REDUCTION STRATEGY OF DIRECT TORQUE CONTROL 93
6.1 Introduction 93
6.2 Multi-vector DTC 95
6.2.1 Structure of Multi-Vector DTC 95
6.2.2 Strategy of Discrete Space Vector Modulation 97
6.3 Fixed Flux Variation DTC 101
6.3.1 Strategy of Reduces Torque Ripple 101
6.3.2 Strategy of Reduces Flux Variation 103
6.4 Simulation and Experimental Results 108
6.4.1 Simulation Results 111
6.4.2 Experimental Results 115
6.5 Summary 123
CHAPTER 7 CONCLUSIONS 124
7.1 Conclusions 124
7.2 Future Work 125
APPENDIX A 126
APPENDIX B 127
REFERENCE 128
PUBLICATION LIST 137
參考文獻 [1] F. Blaschke, “The principle of field-orientation as applied to the transected closed-loop control system for rotating-field machines,” Siemens Rev., vol. 34 pp. 217-220, 1972.
[2] T. A. Lipo, “Recent progress in the development of solid-state AC motor drives,”IEEE Trans. Power Electron., vol. 3, no. 2, pp. 105-117, Apr. 1988.
[3] H. J. Shieh and K. K. Shyu, “Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive,” IEEE Trans. Ind. Electron., vol. 46, pp. 380–389, Apr. 1999.
[4] F. J. Lin and C. C. Lee, “Adaptive backstepping control of linear induction motor drive to track period references,” Proc. Inst. Elect. Eng., vol. 147, no. 6, pp. 356–367, 2000.
[5] E. K. K. Sng, A. C. Liew and T. A. Lipo, “New observer- based DFO scheme for speed sensorless field-oriented drives for Low-Zero-Speed operation,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 959-968, Sep. 1998.
[6] M. S. N. Said and M. E. H. Benbouzid,“Induction motors direct field oriented control with robust on-line tuning of rotor resistance,”IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 1038-1042, Dec. 1999.
[7] A. Consoli, G. Scarcella and A. Testa,“A new zero-frequency flux-position detection approach for direct-field-oriented- control drive,”IEEE Trans. Ind. Appl., vol. 36, pp. 797-804, no. 3, May-Jun. 2000.
[8] I. Takahashi and T. Noguchi, ”A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., vol. IA-22, no. 5, pp. 820-827, Sep..-Oct. 1986.
[9] G. Buja and D. Casadei,“DTC-based strategies for induction motor drives,”IECON‘97 23rd Int. Conf. Ind. Electron., Control and Instrumentation, vol. 4, pp. 1506-1516, 1997.
[10] T. G. Haberler and D. M. Divan,“Control strategies for direct torque control using discrete pulse modulation,”IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 893-901, Sep.-Oct. 1991.
[11] D. Casadei, G. Grandi, G. Serra and A. Tani,“Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines,”IECON‘94 20th Int. Conf. Ind. Electron., Control and Instrumentation, vol. 1, pp. 299-304, 1994.
[12] M. P. Kazmierkowski and A. B. Kasprowicz,“Improved direct torque and flux vector control of PWM inverter-fed induction motor drives,”IEEE Trans. Ind. Electron., vol. 42, no. 4, pp.344-349, Aug. 1995.
[13] J. N. Nash,“Direct torque control, induction motor vector control without an encoder,”IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 333-341, March-April 1997.
[14] H. Y. Zhong, H. P. Messinger and M. Rashad,“A new micro- computer based direct torque control system for three phase induction motor,”IEEE Trans. Ind. Appl., vol. 27, no. 2, pp. 294-298, Mar.-Apr. 1991.
[15] C. G. Mei, S. K. Panda, J. X. Xu and K. W. Lim,“Direct torque control of induction motor – variable switching sectors,”IEEE PEDS‘99 Int. Conf. Power Electron. and Drive Systems, vol. 1, pp. 80-85, 1999.
[16] C. Attaianese, A. Perfetto, A. Damiano and I. Marongiu,“A direct torque control algorithm imposing the mechanical response of speed controlled induction motor drives,”ISIE‘96, Proc. IEEE Int. Symp. Ind. Electron., vol. 1, pp. 157-162, 1996.
[17] T. G. Habetler, F. Profumo, M. Pastorelli and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,”IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1045–1053, Sept.-Oct. 1992.
[18] A. Purcell and P. Acarnley,“Multilevel hysteresis comparator forms for direct torque control schemes,”Electron. Letters, vol. 34, No. 6, pp. 601–603, Mar. 1998.
[19] J. Maes and J. A. Melkebeek,“Speed-sensorless direct torque control of induction motors using an adaptive flux observer,”IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 778–785, May-Jun. 2000.
[20] D. Casadei, G. Serra and K. Tani,“Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769-777, Jul. 2000.
[21] C. Attaianese, V. Nardt, A. Perfetto and G. Tomasso,“Vectorial torque control : A novel approach to torque and flux control of induction motor drives,”IEEE Trans. Ind. Appl., vol. 35 No. 6, pp. 1399-1405, Nov.-Dec. 1999.
[22] S. A. Mir, D. S. Zinger and M. E. Elbuluk, “Fuzzy controller for inverter fed induction machines,” IEEE Trans. Ind Appl.., vol. 30, 5, pp. 78-84, Jan. / Feb. 1994.
[23] S. A. Mir, M. E. E/buluk and D. S. Zger, “PI and fuzzy estimators for the stator resistance in direct torque control of induction motors,” in Proc. IEEE PESC’94, pp. 744-751, 1994.
[24] L. A. Cabrera, M. E. Elbuluk and D. S. Zinger,“Learning techniques to train neural networks as a state selector for Inverter-Fed induction machines using direct torque control,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 788-799, Sep.. 1997.
[25] A. Arias, L. Romeral, E. Aldabas and M. G. Jayne,“Improving direct torque control by means of fuzzy logic,”Electron. Letters, vol. 37, no. 1, pp. 69–71, Jan. 2001.
[26] Y. Xia and W. Oghanna,“Study on fuzzy control of induction machine with direct torque control approach,”Proc. IEEE Int. Symp. Ind. Electron., ISIE‘97., vol. 2, 1997.
[27] J. N. Nash, “Direct torque control, induction motor vector control without an encocer,” IEEE Trans. Ind. Appl.., vol. 33, pp.333-341, Mar. /Apr. 1997.
[28] P. Z. Grabowski, M.P. Kazmierkowski, B.K. Bose and F. Blaabjerg,“A simple Direct-Torque Neuro-Fuzzy control of PWM- Inverter-Fed induction motor drive,”IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 863-870, Aug. 2000.
[29] T. G. Habetler, F. Profumo and M. Pastorelli, “Direct torque control of induction machines over a wide speed range,” in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 600-606, 1992.
[30] J. H. Lee, C. G. Kim and M. J. Youn, “A dead-beat type digital controller for the direct torque control of an induction motor,” IEEE Trans. Power Electron., vol.17, no. 4, pp. 739-746, Sep. 2002.
[31] J. Maes and J. Melkebeek, “Discrete direct torque control of induction motors using back e.m.f. measurements,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 1, pp. 407-414, 1998.
[32] Z. Xu and M. F. Rahman, “A variable structure torque and flux controller for a DTC IPM synchronous motor drive,” in 35th Annual IEEE Power Electron. Specialists Conf., pp. 445–450, Aachen, Germany, 2004.
[33] P. Kazmierkowski and B. Kasprowicz, “Improved direct torque and flux vector control of PWM-fed induction motor drives,” IEEE Trans. Ind. Electron., vol. 42, pp. 344–349, Aug. 1995.
[34] D. Casadei, G. Serra and A. Tani, “Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation” IEEE Trans. Power Electron., vol.15, no. 4, Jul. 2000.
[35] G. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed ac motors-a survey” IEEE Trans. Ind. Electron., vol. 51, no. 4, Aug. 2004.
[36] D. Casadei, F. Profumo, G. Serra and A. Tani, “FOC and DTC: Two viable schemes for induction motors torque control,” IEEE Trans. Power Electron., vol. 17, pp. 779-787, Sep. 2002.
[37] D. Casadei, G. Serra and A. Tani, “Constant frequency operation of a DTC induction motor drive for electric vehicle,“ in Proc. ICEM’96, vol. 3, pp. 224-229, 1996.
[38] B. Singh and D. Goyal, “Improved DSVM-DTC based current sensorless permanent magnet synchronous motor drive,” in Proc. PEDS’07, Bangkok, Nov. 27-30, pp. 1354-1360, 2007.
[39] K. Gulez, A. A. Adam and H. Pastaci, “A novel direct torque control algorithm for IPMSM with minimum harmonics and torque ripples,” IEEE/ASME Trans. Mechatron., vol. 12, pp. 223-227, Apr. 2007.
[40] L. Lin, H. Zhong, J. Zhang, Y. Deng and Y. Zou, “A three-level induction motors DTC algorithm based on fixed synthesizing vectors with reduced flux and torque ripples,” in Proc. ICEMS, 2008, Huazhong, China, pp. 1359-1364. Oct. 17-20, 2008.
[41] P. Pillay, “Vector control of AC permanent magnet machines,”IEEE PESC-4989, pp. 293-297, 1989.
[42] P. Vas, “Vector control of AC machines,” Clarendon Press Oxford, 1990.
[43] D. W. Novotny and T. A. Lipo, “Vector control and dynamic of AC drives,” Clarendon Press Oxford, 1990.
[44] B. K. Bose, “Power electronics and AC drives,” Englewood Cliffs, Prentice-Hall, 1986.
[45] Y. S. Lai,“New random technique of inverter control for common mode voltage reduction of Inverter-Fed induction motor drives,”IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 1139-1146, Dec. 1999.
[46] Y. S. Lai and S. C. Chang,“DSP-based implementation of new random switching technique of inverter control for sensorless vector-controlled induction motor,”Electric Power Appl. IEE Proc., vol. 146, no. 2, pp. 163-172, Mar. 1999.
[47] Y. S. Lai, H. C. Huang, Y. S. Kuan and C. M. Young,“A new random inverter control technique for motor drive,”1998. APEC‘98., Appl. Power Electron. Conf. and Exposition, Conf. Proc. 1998, Thirteenth Annual, vol. 1, pp. 101 –107, 1998.
[48] J. K. Seok and S. K. Sul,“Optimal flux selection of an induction machine for maximum torque operation in Flux- Weakening region,”IEEE Trans. Power Electron., vol. 14, no. 4, pp. 700-708, Jul. 1999.
[49] S. H. Kim and S. K. Sul,“Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region,”IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 512 –518, Aug. 1997.
[50] S. H. Kim and S. K. Sul,“Maximum torque control of an induction machine in the field weakening region,”IEEE Trans. Ind. Appl., vol. 31, no. 4, pp. 787-794, Jul.- Aug. 1995.
[51] Y. N. Lin and C. L. Chen,“Automatic IM parameter measurement under sensorless field – oriented control,”IEEE Trans. Ind. Electron., vol. 46, no.1, pp. 111-118, Feb. 1999.
[52] K. Akatsu and A. Kawamura,“Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection,”IEEE Trans. Ind. App., vol. 36, no 3, pp. 764 –771, May-Jun. 2000.
[53] K. Akatsu and A. Kawamura,“Online rotor resistance estimation using the transient state under the speed sensorless control of induction motor,”IEEE Trans. Power Electron., vol. 15, no. 3, pp. 553-560, May 2000.
[54] M. S. N. Said and M. E. H. Benbouzid,“Induction motors direct field oriented control with robust On-Line tuning of rotor resistance,”IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 1038-1042, Dec. 1999.
[55] S. Mir, M. E. Elbuluk and D. S. Zinger,“PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines,”IEEE Trans. Power Electron., vol. 13, no. 2, pp. 279-287, Mar. 1998.
[56] B. K. Bose and N. R. Patel,“Quasi-Fuzzy estimation of stator resistance of induction motor,”IEEE Trans. Power Electron., vol. 13, no. 3, pp. 401-409, May 1998.
[57] L. A. Cabrera, M. E. Elbuluk and I. Husain,“Tuning the stator resistance of induction motors using artificial neural network,”IEEE Trans. Power Electron., vol. 12, no. 5, pp. 779-787, Sept. 1997.
[58] K. D. Hurst, T. G. Habetler, G. Griva and F. Profumo,“Zero-Speed tacholess IM torque control: Simply a matter of stator voltage integration,”IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 790-795, Jul.-Aug. 1998.
[59] J. Hu and B. Wu,“New integration algorithms for estimating motor flux over a wide speed range,”IEEE Trans. Power Electron., vol. 13, no. 5, pp. 969-977, Sep. 1998.
[60] M. H. Shin, D. S. Hyun, S. B. Cho and S. Y. Choe,“An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors,”IEEE Trans. Power Electron., vol. 15, no. 2, pp. 312-318, Mar. 2000.
[61] D. Casadei, C. Rossi, G. Serra and A. Tani, “Inverter state selection by neural network in DTC induction motor drives,” in Proc. SPEEDAM,00 Conf., Ischia, Italy, June 13-16, pp. C413-C418, 2000.
[62] A. Tripathi, A. M. Khambadkone and S. K. Panda, “Stator flux based space vector modulation and closed loop control of the stator flux vector in overmodulation into six-step mode, ”IEEE Trans. Power Electron., vol. 19, no. 3, pp. 775-782, May 2004.
[63] A. Tripathi, A. M. Khambadkone and S. K. Panda, “Direct method of over modulation with integrated close loop stator flux vector control, “IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1161-1168, Sep. 2005.
[64] A. Tripathi, A. M. Khambadkone and S. K. Panda, “Torque ripple analysis and dynamic performance of a space vector modulation based control method for AC-drives, ”IEEE Trans. Power Electron., vol. 20, no. 2, pp. 485-492, March 2005.
[65] A. Tripathi, A. M. Khambadkone and S. K. Panda, “Dynamic control of torque in over modulation and in the field weakening region,”IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1091-1098, Jul. 2006.
[66] M. Cirrincione, M. Pucci, G. Vitale and G. Cirrincione, “A new direct torque control strategy for the Minimization of common-mode emissions, ”IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 504-517, Mar.-Apr. 2006.
[67] J. K. Kang and S. K. Sul, “New direct torque control of induction motor for minimum torque ripple and constant switching frequency, ”IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, Sep./Oct., 1999.
[68] Y. S. Lai and J. H. Chen, “A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction,” IEEE Trans. Energy Con., vol. 16, no. 3, pp. 220-227, Sep. 2001.
[69] M. P. Senior and J. Weber, “Predictive direct torque control the PM synchronous machine,” IEEE Trans. Ind. Electron. , vol. 52, no. 5, pp. 1350-1356, Oct. 2005.
[70] J. K. Kang and S. K. Sul, “Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters, “IEEE Trans. Ind. Electron. , vol. 48, no. 3, pp. 545-553, Jun. 2001.
[71] K. B. Lee, J. H. Song, I. Choy and J. Y. Yoo ,” Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 255-264, Mar. 2002.
[72] P. Z. Grabowski, M. P. Kazmierkowski, B. K. Bose and F. Blaabjerg, “A simple direct-torque neuro-fuzzy control of PWM-inverter-fed induction motor drive,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 863-870, Aug. 2000.
[73] V. Ambrozic, G. S. Buja and R. Menis, “Band-constrained technique for direct torque control induction motor,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 776-784, Aug. 2005.
[74] J. H. Ryu, K. W. Le, and J. S. Lee, “A unified flux and torque control method for DTC-based induction motor drives,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 234-242, Jan. 2006.
[75] N. R. Chuen and M. E. Elbuluk, “ A new torque and flux controller for direct torque control of induction machines,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1358-1366, Nov./Dec., 2006.
[76] K. Gulez, A. A. Adam and H. Pastaci, “A novel direct torque control algorithm for IPMSM with minimum harmonics and torque ripples,” IEEE/ASME Trans. Mechatron., vol. 12, no. 2, pp. 223-227, Apr. 2007.
[77] Microchip Technology Inc., “An introduction to AC induction motor control using the dsPIC30F / dsPIC33F DSC,” 2005.
[78] Microchip Technology Inc., “dsPIC family data sheet,” 2007.
[79] Microchip Technology Inc., “Using the dsPIC30F / dsPIC33F for vector control of an ACIM,” 2007.
[80] M. H. Rashid, “Power electronics circuits and applications,” Third Edition, 2004.
[81] D. W. Novotny and T. A. Lipo, “Vector control and dynamics of AC drives,” Oxford University Press Inc., New York, 1996.
[82] R. Krishnan, “Electric motor drives modeling, analysis and control,” Prentce-Hall, Inc., 2001.
[83] L. Tang, L. Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque control for interior permanent-magnet synchronous machine drive with low ripple in torque and flux—a speed-sensorless approach,” IEEE Trans. Ind. Appl. vol 39, no. 6, pp. 1748-1759, Nov./Dec., 2007.
指導教授 李柏磊、徐國鎧
(Po-Lei Lee、Kuo-Kai Shyu)
審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明