博碩士論文 90622016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.204.48.64
姓名 諶科維(Ke-Wei Chen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣中部新構造運動之數值模擬
(Numerical modeling of Neotectonics in central Taiwan)
相關論文
★ 出磺坑背斜地區邊坡穩定與水文特性之相關研究★ 集集地震斷層北段地下構造之三維物理模型研究
★ 出磺坑構造地質與水系發育之相關性研究★ 吊神山地區水文與地質特性之相關性研究
★ 大坑地區地滑之研究★ 結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究
★ 台灣中部孕震帶及車籠埔斷層活動之物理模型研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1999年921集集大地震後,相當多的研究工作投入在台灣西部麓山帶的構造活動上。而整個中部構造活動與板塊聚合所造成的造山過程密切相關,為了模擬分析此地區的構造狀態,包括滑脫面與斷層型態,有兩種方法被應用:物理模型實驗與數值模擬方法,物理模型實驗結果較偏向定性的分析,欲求得量化精確的結果則必須依賴數值模擬方法。本研究使用有限元素法的ADELI數值模擬程式進行研究,期望瞭解此研究區域的地下構造型態。
本研究參考地質與地球物理相關資料,採用彈塑性之二維有限元素法模型,設計三種簡單的滑脫面型態,並考慮台灣中部地區之主要邊界斷層,給予模型適當的邊界條件和材料參數,藉以設計出一合理的初始模型進行模擬計算,利用921震前的GPS速度場與1990~2002十年間的地震分佈,分別比對模型地表水平速度場與CPD(Cumulated Plastic Deformation)分佈作為控制,找出一合理的摩擦係數組合,進而提出地殼構造活動之解釋。
模擬結果顯示:(1)摩擦係數為一重要的參數,滑脫面摩擦係數為0.4,斷層面摩擦係數由西自東為遞增(0.1~0.5)或相等(0.3),且滑脫面傾沒角呈40度有較好的比對結果。(2)滑脫面在通過西部麓山帶後,應延伸至80km,再以40度之傾沒角消失。(3)西部麓山帶斷層面的幾何型態為覆瓦狀構造之模擬結果,與地震分佈的比對上有最高的符合度。(4)滑脫面傾沒轉折所發育的應變帶造成的地表隆起最為顯著,且強烈影響雙冬斷層以東的地表水平速度場及應變的分佈型態。(5)最佳模型結果顯示,彰化斷層與車籠埔斷層間之地表將會是未來台灣中部西部麓山帶中速度場值最高的區域。
摘要(英) Efforts have been devoted to the study of tectonic activities at the foothill area in central Taiwan after Chi-Chi earthquake. Tectonic settings under central Taiwan is considered to be highly related to the orogenic processes, two methods, physical modeling and numerical modeling, are usually applied to study the structural evolution of the area by taking the geologic patterns of the decollement and boundary faults into consideration. Physical modeling tends to do the qualitative analysis while numerical modeling stresses the quantitative results. As a basis of finite element method, Adeli numerical modeling program has been used in this study in order to obtain a better understanding of the subsurface geologic structures in central Taiwan.
With reference to the available geological and geophysicals data, boundary conditions and material factors have been carefully selected in designing the initial structural model in the elasto-plastic half space. By stepwisely changing the main boundary fault conditions, three types of decollement design have been tested to establish a basic model for further analysis. Modeling results, such as surface horizontal velocity field and cumulated plastic deformation(CPD), are then used to correlate with the pre-921 earthquake GPS data and the earthquake distribution pattern in 1990-2002, and thus an interpretation on the characteristics of the tectonic movement is presented.
Following conclusions can be drawn from numerical modeling results:
(1) Coefficient of friction(CF) is highly significant. The model, with a CF=0.4 for the decollement as well as CF’s are in ascending order(0.1-0.5) or all equal to 0.3, shows better correlated results.
(2) Decollement should extend up to 80 km after crossing western foothill area, and then dips 40 degrees towards the east.
(3) When geologic boundary faults are arranged in imbricate pattern, modeling results are best fitted to earthquake distribution.
(4) High surface ground uplift appears at the place where decollement kinks at depth, and besides, the distribution patterns of the ground horizontal velocity and strains are also obviously influenced by the kinking of the decollement.
(5) The place between Chanhwa and Chelungpu faults will bear the highest horizontal velocity field in central Taiwan in the future.
關鍵字(中) ★ 數值模擬
★ 累積塑性變形
★ 新構造運動
★ 滑脫面
關鍵字(英) ★ Numerical modeling
★ CPD
★ Neotectonics
★ decollement
論文目次 論文提要 …………………………………………………………… i
誌謝 …………………………………………………………………ii
目錄 ……………………………………………………………… iii
圖目 ………………………………………………………………… v
表目 ……………………………………………………………… vii
第一章 緒論 ……………………………………………………… 1
1.1 研究動機 ……………………………………………………… 1
1.2 研究方法 ……………………………………………………… 1
1.3 論文內容 ……………………………………………………… 2
第二章 前人研究 ………………………………………………… 4
2.1 地質背景 ……………………………………………………… 4
2.1.1 台灣區域地質 ……………………………………………… 4
2.1.2 研究地區地質 ……………………………………………… 4
2.2 前人模型模擬研究…………………………………………… 10
2.3 薄皮逆衝模型 …………………………………………………12
第三章 研究方法 …………………………………………………16
3.1 有限元素法 ……………………………………………………17
3.2 Drucker-Prager伏降準則 ………………………………… 18
3.3 動態楊氏係數(Dynamic Young’s Modulus) ………………19
3.4 摩擦係數之基本理論 …………………………………………19
3.5 二維數值模型之相關設定 ……………………………………20
3.5.1 參考模型 ……………………………………………………20
3.5.2 測試模型 ……………………………………………………28
3.6 研究流程 ………………………………………………………36
第四章 案例分析 …………………………………………………38
4.1 建立參考模型 …………………………………………………43
4.2 測試模型 ………………………………………………………50
第五章 分析結果與比對 …………………………………………77
5.1 地表水平速度場與GPS觀測資料………………………………77
5.1.1 GPS資料 …………………………………………………… 77
5.1.2 建置參考模型 ………………………………………………78
5.1.3 測試模型 ……………………………………………………79
5.2 位移場 …………………………………………………………80
5.2.1 建置參考模型 ………………………………………………80
5.2.2 測試模型 ……………………………………………………81
5.3 累積塑性變形 …………………………………………………82
5.3.1 建置參考模型 ………………………………………………82
5.3.2 測試模型 ……………………………………………………83
5.4累積塑性變形與地震分佈 .……………………………………87
5.4.1 建置參考模型 ………………………………………………87
5.4.2 測試模型 ……………………………………………………87
5.5 最佳符合模型 …………………………………………………90
第六章 討論與結論 ………………………………………………93
6.1 討論 ……………………………………………………………93
6.2 結論 ……………………………………………………………94
6.3 建議 ……………………………………………………………96
參考文獻 ……………………………………………………………97
英文摘要……………………………………………………………102
參考文獻 Byerlee, J. D., 1978. Friction of rocks, Pure Appl. Geophys., 116, 615-626.
Chang, L. S., 1971. A biostratigraphic study of the so-called Slate Formation in Taiwan based on smaller foraminifera: The E-W Cross-Mountain Highway, Proc. Geol. Soc. China, 14, 45-61.
Chemenda, A. I., Yang, R. K., Hsieh C. H., and Groholsky, A. L., 1997. Evolutionary model for the Taiwan collision based on physical modeling, Tectonophysics, 274, 253-274.
Chemenda, A. I., Yang, R. K., Stephan, J. F., Konstantinovskaya, E. A., and Ivanov, G. M., 2001. New results from physical modeling of arc-continent collision in Taiwan: evolutionary model, Tectonophysics, 333, 159-178.
Chen, J. S., 1978, A comparative study of the refraction seismic data obtained on the Changhua plain to the Peikang shelf, Taiwan, Petro. Geol. Taiwan, 15, 199-217.
Covey, M., 1984, Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep, Petro. Geol. Taiwan, 20, 53-83.
Desai, C. S., and Siriwardane, H. J., 1984. Constitutive Laws for Engineering Materials, With Emphasis on Geologic Materials, Prentice-Hall, Englewood Cliffs, N. J.
Gueguen, Y., and Placiauskas, V., 1994. Introduction to the physics of rocks, Princeton University Press, Princeton, New Jersey.
Hassani, R., 1994. Modélisation numérique de la déformation des systèmes géologiques, Ph. D. Thesis, Univ. of Montpellier Ⅱ.
Hassani, R., and Chéry, J., 1996. Anelasticity explains topography associated with Basin and Range normal faulting, Geology, 24, 12, 1095-1098.
Hassani, R., Jongmans, D., and Chéry, J., 1997. Study of plate deformation and stress in subduction processes using two-dimensional numerical models, J. Geophys. Res., 102, 17951-17965.
Hu, J. C., and Angelier, J., 1996. Modeling of Stress-deformation Relationships in a Collision Belt: Taiwan, TAO, 7, 4, 447-465.
Hu, J. C., Angelier, J., Lee, J. C., Chu, H, T., and Daniel, B., 1996. Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modeling, Tectonophysics, 255, 243-268.
Huchon, P., Barrier, E., Bremaecker, J. C. D., and Angelier, J., 1986a. Collision and stress trajectories in Taiwan: A finite element model, Tectonophysics, 125, 179-191.
Huchon, P., Barrier, E., Bremaecker, J. C. D., and Angelier, J., 1986b. A finite element model of collision and stress trajectories in Taiwan, Memoir Geol. Soc. China, 7, 173-185.
Jeng, F. S., Hsiao, M. H., and Lu, C. Y., 1996. Numerical Simulation of Neotectonics Near Peikang High, Mem. Geol. Soc. China., 39, 4, 557-578.
Lee, J. C., Lu, C. Y., Chu, H. T., Delcaillau, B., Angelier, J., and Deffontaines, B., 1996. Active Deformation and Paleostress Analysis in the Pakua Anticline Area of Western Taiwan, TAO, 7, 4, 431-446.
Lin, A. T., and Watts, A. B., 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. G. R., 107, B9, 2185.
Liu, C. C., 1995. The Ilan plain and the southwestward extending Okinawa trough, Tour. Geol. Soc. China, 38, 3, 229-242.
Lu, C. Y., and Malavieille, J., 1994. Oblique convergence, indentation and rotation tectonics in the Taiwan mountain belt: Insights from experimental modeling, Earth and Planetary Science Letters, 121, 477-494.
Rau, R. J., and Wu, F. T., 1995. Tomographic imaging of lithosphere structrues under Taiwan, Earth and Planetary Science Letters, 133, 517-532.
Seno, T, 1977. The instantaneous rotation vector of Philippine Sea Plate relative to Eurasian Plate, Tectonophysics, 42, 209-226.
Suppe, J., and Jamson, 1979. Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Petro. Geol. Taiwan, 16 1-18.
Suppe, J., 1980. Imbricated structure of western foothills belt, south-central Taiwan, Petro. Geol. Taiwan, 17, 1-16.
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89.
Suppe, J., 1987. The active Taiwan mountain belt. In: J. P.schaer and J. Rodgers(Editors), The Anatomy of Mountain Ranges. Princeton Univ. Press, Princeton, N. J., 277-293.
Tang, J. C., and Chemenda, A. I., 2000. Numerical modelling of arc-continent collision: application to Taiwan, Tectonophysics, 325, 23-42.
Teng, L. S., 1992. Geotectonic evolution of Teriary continental margin basins of Taiwan, Petrol. Geol. of Taiwan, 27, 1-19.
Viallon, C., Huchon, P., and Barrier, E., 1986. Opening of the Okinawa basin and collision in Taiwan: a retreating trench model with lateral anchoring, Earth and Planetary Science Letters, 80, 145-155.
Wang, C. Y., Ellwood, A., Wu. F. T., Rau, R. J., and Yen, H. Y., 1996. Mountain-Building in Taiwan and the Critical Wedge Model, Geophysical Monograph 96 , 49-55.
Wang, C. Y., Chang, C. H., and Yen, H. Y., 2000. An Interpretation of the 1999 Chi-Chi Earthquake in Taiwan Based on the Thin-Skinned Thrust Model, TAO, 11, 3, 555-750.
Wang, C. Y., Li, C. L., Su, F. C., Leu, M. T., Wu, M. S., Lai, S. H., and Chern C. C., 2002. Structural Mapping of the 1999 Chi-Chi Earthquake Fault, Taiwan by seismic Reflection Methods, TAO, 13, 3, 211-226.
Wu, F. T., 1978. Recent tectonics of Taiwan: Jour. Phys. Earth 26, Suppl., S265-S299.
Wu, F. T., Rau, R. J., and Salzberg, D., 1997. Taiwan Orogeny: Thin-skinned or lithospheric collision, Tectonophysics., 274, 191-220.
Yu, S. B., Chen, H. Y., and Kuo, L. C., 1997. Velocity field of GPS station in the Taiwan area, Tectonophysics, 274, 41-59.
李鍚堤,1986. 大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立台灣大學地質學研究所博士論文,台灣台北,202頁。
何春蓀,1997. 臺灣地質概論─臺灣地質圖說明書,二版三刷,中華民國經濟部中央地質調查所,台灣台北,164頁。
林永斌,2002. 集集地震斷層活動特性之二維物理模型研究,國立中央大學地球物理研究所碩士論文,台灣中壢,111頁。
鄧屬予,1997. 臺灣地質之九─臺灣的沉積岩,中華民國經濟部中央地質調查所,台灣台北,235頁。
蕭銘壐,1996. 北港高區附近新構造運動之數值模擬,國立臺灣大學地質學研究所碩士論文,台灣台北,113頁。
指導教授 楊榮堃(Rong-Kuan Yang) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明