博碩士論文 90623021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.236.112.70
姓名 陳彥甫(Yen-Fu Chen)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 地球磁尾慢速震波之研究
(A Study of Slow Shocks in the Earth’s Magnetotail)
相關論文
★ 磁流體波於電流片中傳播之研究★ 壓力非均向電漿中霍爾電流對震波形成之效應
★ 撕裂模不穩定性於壓力均向與非均向電漿中之磁流體理論★ 地球磁層頂二維結構之研究
★ 慢速震波在壓力非均向電漿中之研究★ 應用Kappa速度分佈函數所建立之廣義Harris磁場模式
★ 靜電場中帶電粒子束不穩定性★ 救火管不穩定性之磁流體力學理論
★ 離子慣性效應對救火管與磁鏡不穩定性之影響★ 地球磁鞘電漿之熱力狀態
★ 微粒電漿中之磁流體波★ 地球磁層頂二維結構之重建與分析
★ 救火管不穩定性之混合粒子碼模擬研究★ 相對論電漿中之磁流體波與震波
★ 沿磁力線救火管不穩定之磁流體數值模擬★ 一維與二維電漿靜電粒子模擬與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Petschek 於1964年提出一磁力線重連理論模式,其中由X-line延伸出兩對的慢速震波。基於這樣的理論,在太空電漿環境中尋找慢速震波的存在對於磁力線重連的發生被視為是極重要的證據。過去許多的研究即是將人造衛星觀測資料,應用磁性流體力學的躍遷條件式來檢定有無慢速震波的特性。本文中將使用一套延伸自Hau and Sonnerup [1989] 所發展的震波躍遷方法,做為選定於地球磁尾所蒐集到的衛星觀測資料中之慢速震波與其上下游的狀態,並比較其他方法所得之結果。在七個穿越事件中有兩個案可確定是慢速震波。我們並進一步以霍爾磁性流體力學模式來分析此慢速震波案例之結構與物理特性。這些分析包括震波上下游兩端的定點特性,及經由積分非線性的霍爾磁性流體力學方程式而得的整個震波結構。研究顯示,當黏滯效應夠大時或足夠小的霍爾參數均可導致慢速震波下游波列結構的消失。
摘要(英) Petschek [1964] proposed a theoretical model for magnetic field line reconnection that involves two pairs of slow shocks. For this reason, search of slow shocks in the space plasma environment is important for the observational evidence of magnetic reconnection. Many researches have been carried out to compare the MHD jump conditions with the observational data to identify the characteristics of slow shocks. In the present study, a different method based on the formulation of Hau and Sonerrup [1989] is used to determine the upstream and downstream conditions of slow shocks from satellite data sampled in the geomagnetotail. Only two out of seven crossing events may be surely identified as slow shocks and the results are compared with those based on different methods. The characteristics of the slow shocks are further analyzed based on the resistive/viscous Hall-MHD models. In particular, linear fixed-point analysis is performed for the upstream and downstream states of the shocks while the shock structures are calculated from the numerical integration of nonlinear Hall-MHD equations. The study shows that the absence of wave trains acquires large values of viscosity and/or small Hall parameters.
關鍵字(中) ★ 慢速震波 關鍵字(英) ★ shock structure
★ jump conditions
★ slow shock
論文目次 Chinese Abstract i
English Abstract ii
Contents iii
List of Tables iv
List of Figures v
Chapter 1. Introduction 1
Chapter 2. Basic Equations and Theory 7
2.1. Jump Conditions Across Shocks 8
2.2. Models for Shock Structures 9
2.3. Fixed-Point Analysis 12
Chapter 3. Applications of Jump Conditions 17
Chapter 4. Structures of Slow Shocks 22
Chapter 5. Discussion and Summary 45
References 47
參考文獻 Coroniti, F. V., Laminar wave-train structure of collisionless magnetic slow shocks, Nucl. Fusion, 11, 261, 1971.
Dungey, J. W., Interplanetary magnetic field and auroral zones, Phys. Rev. Lett., 6, 47, 1961.
Frank, L. A., and W. R. Paterson, Survey of electron and ion bulk flows in the distant magnetotail with the Geotail spacecraft, Geophys. Res. Lett., 21, 2963, 1994.
Hau, L.-N., and B. U. Ö. Sonnerup, On the structure of resistive MHD intermediate shocks, J. Geophys. Res., 94, 6539, 1989.
Hau, L.-N., and B. U. Ö. Sonnerup, The structure of resistive-dispersive intermediate shocks, J. Geophys. Res., 95, 18,791, 1990.
Hau, L.-N., and B. U. Ö. Sonnerup, The thickness of resistive-dispersive shocks, J. Geophys. Res., 97, 8269, 1992.
Hsieh, K. C., and A. K. Richter, The importance of being earnest about shock fitting, J. Geophys. Res., 91, 4157, 1986.
Landau, L. D., and E. M. Lifshitz, Fluid Mechanics, pp. 49, Pergamon, New York, 1959.
Lee, L. C., Y. Lin, Y. Shi, and B. T. Tsurutani, Slow shock characteristics as a function of distance from the x-line in the magnetotail, Geophys. Res. Lett., 16, 903, 1989.
Lepping, R. P., and P. D. Argentiero, Single spacecraft method of estimating shock normals, J. Geophys. Res., 76, 4349, 1971.
Lin, Y., and L. C. Lee, Chaos and ion heating in a slow shock, Geophys. Res. Lett., 18, 1615, 1991.
Omidi, N., and D. Winske, Structure of slow magnetosonic shocks in low beta plasmas, Geophys. Res. Lett., 16, 907, 1989.
Paterson, W. R., and L. A. Frank, Survey of plasma parameters in Earth’s distant magnetotail with the Geotail spacecraft, Geophys. Res. Lett., 21, 2971, 1994.
Petschek, H. E., Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, edited by W. N. Hess, NASA Spec. Publ., SP-50, 425, 1964.
Saito, Y., T. Mukai, T. Terasawa, A. Nishida, S. Machida, M. Hirahara, K. Maezawa, S. Kokubun, and T. Yamamoto, Slow-mode shocks in the magnetotail, J. Geophys. Res., 100, 23,567, 1995.
Scarf, F. L., F. V. Coroniti, C. F. Kennel, E. J. Smith, J. A. Slavin, B. T. Tsurutani, S. J. Bame, and W. C. Feldman, Plasma wave spectra near slow mode shocks in the distant magnetotail, Geophys. Res. Lett., 11, 1050, 1984.
Seon, J., L. A. Frank, W. R. Paterson, J. D. Scudder, F. V. Coroniti, S. Kokubun, and T. Yamamoto, Observations of slow-mode shocks in Earth’s distant magnetotail with the Geotail spacecraft, J. Geophys. Res., 101, 27,383, 1996.
Swift, D. W., On the structure of the magnetic slow switch-off shock, J. Geophys. Res., 88, 5685, 1983.
Viñas, A. F., and J. D. Scudder, Fast and optimal solution to the “Rankine-Hugoniot problem,” J. Geophys. Res., 91, 39, 1986.
Winske, D., E. K. Stover, and S. P. Gary, The structure and evolution of slow mode shocks, Geophys. Res. Lett., 12, 295, 1985.
指導教授 郝玲妮(Lin-Ni Hau) 審核日期 2004-5-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明