博碩士論文 90624002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.226.244.70
姓名 胡哲維(Che-Wei Hu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 花崗岩浸泡熱水後的化學與礦物學轉換及其對裂隙發展之影響
(Chemical and mineralogical transformation in granite after immersion in hot water and their effects in the crack development)
相關論文
★ 花蓮地區單一岩種之鹼-骨材反應研究★ 台灣西部河川砂石及北部地區安山岩之鹼-骨材反應潛能研究
★ 苗栗汶水地區第三紀沈積岩層面之 黑色發亮物質研究★ 花蓮瑞穗地區斑點片岩鈉長石變質斑晶之成因與變質溫度壓力演化
★ 地震斷層作用後的流體滲透作用: 檢視車籠埔斷層南投井斷層岩之化學及礦物組成★ 台灣海岸山脈秀姑巒溪奇美斷層帶之構造分析
★ 地震斷層作用後的流體滲透作用:檢視TCDPA井車籠埔斷層斷層岩的化學及礦物組成★ 花崗岩浸泡熱水之後,滲透率、孔隙率與裂隙發展的關聯性
★ TCDP鑽井岩心之熱參數直接量測與相關物理特性研究★ 台灣車籠埔斷層注水實驗期間的氣體與水化學分析
★ 兩廣雲開高州-雲爐地區麻粒岩相變質作用演化研究★ 含藍閃石之角閃岩與變質基性岩之關係以及其礦物化學研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 花崗岩體是理想的核廢料處置母岩之一,但核廢料本身釋放出的熱若有機會加熱地下水,可能造成浸泡在熱水中的花崗岩產生化學及礦物相的變化,使得裂隙增加,放射性核種的外洩機率增大,影響到處置場的安全。金門東部地區的田埔花崗岩是理想的實驗材料,本研究採用此區之花崗岩做為實驗之用。本實驗設計90℃與60℃兩組熱水浸泡實驗。使用溶液的種類採用海水、RO逆滲透水、pH值3、 5、9、11的溶液。為了監測花崗岩岩體在浸泡熱水後初期的礦物及化學轉換,在浸泡後第5、10、20、40、80、120天取出浸泡中的岩體樣本做偏光顯微鏡、螢光顯微鏡觀察以及XRD、SEM等方法對岩體在這段期間所發生的變化做詳細的檢查,而對於浸泡後的溶液一併作ICP-AES實驗。而實驗過程中樣本的重量變化和溶液的pH值變化也進行測量。
實驗結果顯示,浸泡熱水後的20天之內,pH5、RO water、pH9這些初始pH值接近中性的溶液之pH值非常快速的往中性變化。溫度越高溶蝕速率越快,在酸性環境中各種元素溶出的量較大。溶液中的元素可以反映出礦物的溶解情形。Na、Ca、Si反映了斜長石的溶解,Fe、Mg、K、Si反映了黑雲母的溶解,K、Si反映了鉀長石的溶解,Si反映了石英的溶解。花崗岩可流通裂隙的密度在90℃,pH3、pH11、RO逆透水環境中,實驗第10天有大量的增加,但是到了第120天除了pH3實驗組之外,都降低到接近新鮮花崗岩的可流通裂隙密度。顯示酸性環境對於核廢料儲存安全問題較為不利。XRD的實驗結果並沒有偵測到新生礦物。
摘要(英) Granitoid is generally believed to be a good repository for the nuclear waste diposal. However, the heat release from decay of the nuclear waste could combine with the groundwater and cause physical and chemical changes in the mineral phases of the granitic body. These changes may result in occurrence of crack and increase the crack of the granitic body, which could raise the probability of leaking of nuclear species. The Tianpu granite located at East Kimen is an idea experimental material and was used in this study. Samples were soaked in different solutions separately under two temperatures of 60 ℃ and 90 ℃. For practical purposes, the solution with pH value of 3, 5, 9, 11 were used in the experiments. Additionally, the sea water and the RO water were also used. Specimens were removed from the hot water bath each time after 5, 10, 20, 40, 80, 120 days of immersion. The method to monitor the mineralogical and chemical transformation of the granite samples in this study included petrographical and fluorescent microscopy, XRD, SEM and ICP-AES. Beside, the changes of samples weight, pH value of solutions were investigated during the immersion period.
The results showed that solutions of pH5, RO water and pH9 were readily neutralized within 20 days after experiment began. Dissolution rate at 90 ℃ condition is higher than at 60 ℃ condition. Likewise, the acidity increase of solutions caused higher dissolution rate. The concentrations of Na, Ca and Si were mainly reflected the dissolution from plagioclase. The Fe, Mg, K and Si were released from biotite. The K and Si were derived from K-feldspar, and minor content of Si were dissolved from quartz. During the immersion test up to 10 days, the density of flowable crack in the granite samples immersed in the solution of pH3, pH11 and seawater were increased. Later, density of flowable crack decreased during immersion up to 120 days in the sea water and the solution of pH11. The results indicated that acid solution adverse to the safety of the nuclear waste repository. In the XRD result, no secondary mineral can be found.
關鍵字(中) ★ 花崗岩
★ 熱水
★ 裂隙
關鍵字(英) ★ granite
★ hot water
★ crack
論文目次 摘要 i
誌謝 ii
目錄 iii
圖目錄 v
表目錄 vii
圖版目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與前人研究 1
1.3 位置與交通 3
1.4 地質背景 5
1.5 地形 6
第二章 研究方法 7
2.1 實驗設置 7
2.2 實驗儀器及分析方法 8
2.2.1 溶液pH值量測 8
2.2.2 岩體樣本重量量測 8
2.2.3 螢光顯微鏡與偏光顯微鏡 8
2.2.4 掃瞄式電子顯微鏡 9
2.2.5 X光粉末繞射儀 9
2.2.6 感應耦合電漿-原子發射光譜分析儀 10
第三章 實驗結果 13
3.1 岩象觀察 13
3.2 電子顯微鏡觀察 15
3.3 溶液pH值變化 15
3.4 樣本重量變化 19
3.5 感應耦合電漿-原子發射光譜分析儀分析結果 25
3.6 可流通裂隙分析結果 44
3.7 X光粉末繞射儀分析結果 45
第四章 討論 53
4.1 熱水溶液的變化 53
4.2 花崗岩岩樣的變化 56
4.3 礦物相的轉變 60
第五章 結論 62
參考文獻 63
圖版 69
英文摘要 89
參考文獻 方建能 (2002) 安山岩之熱液蝕變作用。國立台灣大學地質學研究所博士論文,共130頁。
尤崇極、施清芳、張坤城、宋國良、鄧仁傑、張福麟、劉建麟 (1991)結晶岩區地質驗證 (金門地區)報告書,原子能委員會核能研究所。
市村毅 (1941) 金門島的地質 (概要)。台灣地學記事,第12卷,2-3號,27-37頁。
宋聖榮、羅煥記、曹恕中、楊金臻 (1993) 利用感應耦合電漿-原子發射光譜分析法測定岩石中的主要及微量元素。地質,第13卷,第2期,第131-148頁。
林朝宗、張郁生、何信昌 (1991) 母岩特性綜合研究報告書,長程處置計畫第二階段工作計畫。原子能委員會核能研究所。
林蔚 (1994) 金門地區燕山晚期花崗岩類之地球化學及熱歷史研究。國立台灣大學地質學研究所碩士論文,共108頁。
林蔚 (2001) 華南沿海地區晚燕山期侵入岩漿活動及大地構造意義。國立台灣大學地質科學研究所博士論文,共108頁。
陳培源 (1970)a 金門島及烈嶼地質說明書。經濟部金門地質礦產探勘隊工作報告,7-19頁。
陳培源 (1974)b 福建馬祖群島之地質與礦產。 礦冶,第18卷,第4期,第101-103頁。
陳培源 (1974) 馬祖群島地質,附帶討論福建沿海之火山活動及地殼運動。臺灣省地質調查所彙刊,第24號,第89-98頁。
陳愷 (1950) 福建地質與台灣地質。大陸雜誌,第1卷,第3期,第11-15頁。
陳慶瀚、蔡龍珆 (1986) 金門島地質調查。台灣地區地球物理研討會,541-551頁。
蔡昭明、李若燦、徐源鴻、鄭維申 (1993),用過核燃料後端營運政策之研究,原子能委員會放射性物料管理局。
Aagaard, p. and Helgeson, H. C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, I. Theoretical considerations: Amer. J. Sci., 282, 237-285.
Alexander, G. B., Heston, W. M., and Iler, R. K. (1954) The solubility of amorphous silica in water: Jour. Phys. Chem., V. 58, No. 3, pp. 453-455.
Berner, R. A. and Holdren, G. R. (1979) Mechanism of feldspar weathering II. Observation of feldspars from soil: Geochim. Comsmochim. Acta, 43, 1173-1186.
Berner, R. A. and Morse, J. W.(1974) Dissolution kinetics of calcium carbonate in sea water, Ⅳ. Theory of calcite dissolution. Am. J. Sci., 274:108.
Blum A. E. and Stillings, L. L. (1995) Feldspar dissolution kinetics. White, A. F. and Brantley, S. L. (eds.) Reviews in Mineralogy, 31: Chemical weathering rates of silicate minerals, 291-351.
Busenberg, E. and Chemency, C. V. (1976) The dissolution kinetics of feldspars at 25 ℃ and 1 atm CO2 partial pressure. Geochim. Cosmochim. Acta., V. 40, No. 1, pp. 41-49.
Brady, P. V., and Walther, J. V. (1989) Controls on silicate dissolution rates in neutral and basic pH solutions 25℃. Geochim. Cosmochim. Acta., V. 53, No. 11, pp. 2823-2930.
Casey W. H. and Bunker B. (1990) Leaching of mineral and glass sufaces during dissolution. In Mineral-Water Interface Geochemistry (eds. M. F. Hochella, Jr. and A. F. White); Rev. Mineral. 23, 397-426.
Charvet, J., Faure, M., Xu, J. W., Zhu, G., Tong, W. X. and Lin, S. F. (1990) The Changle-Nanao tectonic zone, South East China. C. R. Acad. Sci. Paris, t. 310, serie II, p. 1271-1278.
Charvet, J. Lapierre, H. and Yu, Y. W. (1994) Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences, v. 9(4), p. 387-396.
Chen, C. H., Lin, W., Lu, H., Lee, C. Y., Tien, J. L. and Lai, Y. H. (2000) Cretaceous fractionated I-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism. In: Special volume of forth Hutton symposium on the origin of granites and related rocks, Transaction of Royal Society of Edinburgh: Earth Science, v. 91, p. 195-205.
Chou L. and Wollast R. (1985) Steady-state kinetic and dissolution mechanisms of albite. Amer. J. Sci. 285, 963-993.
Evans, J. P. and Chester, F. M. (1995). Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures. J. geophys. res., v. 100, No. B7, 13007-13020.
Fung, P. C. and Sanipelli, G. G. (1982) Surface studies of feldspar dissolution using replication combined with electron microscope and spectroscopic techniques: Geochim. Cosmochim. Acta, 46, 503-512.
Garrels, R. M. and Howard, P. (1959) Reactions of feldspar and mica with water at low temperature and pressure. Clays Clay minerals 2, pp. 68-88.
Gilder, S. A., Gill, J., Coe, R. S., Zhao, X. X., Liu, Z. W., Wang, G., Yuan, K., Liu, W. L., Kuang, G. D. and Wu, H. R. (1996) Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J. geophys. res., v. 101(B7), p.16,137-16,154.
Goddard, J. and Evans, J. P. (1995) Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A. J. struct. geol., 17, 533-547.
Goldich, S. M. A. study in rock weathering. (1938) J. geol., 46, 17-58.
Heard, H. C.(1980) Thermal expansion and inferred permeability of climax quartz monzonite to 300℃ and 27.6 MPa. Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 17: 289-296.
Hemley, J. J. and Jones, W. R. (1964) Chemical aspects of hydrothermal alteration with emphasis on dydrogen metasomatism. Econ. Geol., 59: 538-569.
Holdren, Jr., G. R. and Adams, J. E. (1982) Parabolic dissolution kinetics of silicate minerals: An artifact of non-equilibrium precipitation processes? Geology, 10, 186-190.
Holdren, G. R., Jr, and Speyer, P. M. (1985) pH dependent changes in the rates and stoichiometry of dissolution of an alkali feldspar at room temperature: Am. Jour. Sci., V. 285, No. 10, pp. 994-1026.
Holland, H. D. (1967) Gangue minerals in hydrothermal deposits. In: H. L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits, Holt, Rinehart and Winstone, New York, N. Y., Ch. 9, pp. 382.
Jackson, M. L. (1963) Interlaying of expansible silicates in soils by chemical weathering. Clays Clay Miner., 11: 29-46.
Keller, W. D., Balgord, W. D. and Reesman, A. L. (1963) Dissolved products of artificially pulverized silicate minerals and rocks, part I. Jour. Sediment. Petr., 33, 191-204.
Kobayashi, S., Sakamoto, T. (2001) Artificial weathering of granite under earth surface conditions-The influence of acid rain on rocks and minerals (part 3). Clay Science 11, 349-367.
Konrad, B. K. (1979) Introduction to geochemistry, McGraw-Hill Book Company, pp. 140-164.
Larson, R. L. and Pitman, W. C. III. ( 1972) World-wide correlation of Mesozoic magnetic anomalies and its implications. G. S. A. Bull. 83: 3645-3662.
Li, Z.X. (1998) Tectonic history of the major East Asian lithospheric blocks since the Mid-Proterozoic-A synthesis. In: Flow, M. F. J., et al. (eds) Mantle dynamics and plate interactions in East Asia. AGU geodynamics series, V. 27, p. 221-243.
Lin, F. C., and Clemency, C. V. (1981) The kinetics of dissolution of muscovites at 25℃ and 1 atm CO2 patial pressure. Geochim. Cosmochim. Acta., V. 45, pp.571-576.
Malmstrom M. and Banwart S. (1997) Biotite dissolution at 25℃: The pH dependence of dissolution rate and stoichiometry. Geochimoca et Cosmochimica Acta, Vol, 61, No. 14, pp. 2779-2799.
Made, B., and Fritz, B. (1990) The composition of weathering solutions on granitic rocks: comparison between field observations and water-rock interactions simulations based on thermodynamic and kinetic laws: Chem. Geology, V. 84, No. 1-4, pp. 100-104.
Moore, G. L. (1989) Introduction to Inductively Coupled Plasma Atomic Emission Spectrometry. Elsevier, Amsterdam, 340 pp.
Morrow, C., Lockner, D., Moore, D. and Byerlee, J. (1981) Permeability of granite in a temperature gradient. J. Geophys. Res., 86(B4): 3002-3008.
O’Hara, K. (1988) Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting, North Carolina, U.S.A. Tectonophysics 156, 21-36.
Rasmey, M. H. and Coles, B. J. (1992) Strategies of multi-element calibration for maximisin the accuracy of geochemical analysis by inductively coupled plasma atomic emission spectrometry. In: I. Javis and K. E. Javis (Guest-Editors), Plasma Spectrometry in the Earth Science. Chem. Geol., 95, p. 95-112.
Richter, D. and Simmons, D. (1974) Thermal expansion behavior of igneous rock. Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 11: 403-411.
Schott, J., Berner, R. A., and Sjoberg, E. L. (1981) Mechanism of pyroxene and amphibole weathering. I. Experimental studies of iron-free minerals. Geochim. Cosmochim. Acta., V. 45, pp. 2123-2135.
Suzuki, K., Oda, M., Kuwahara, T. and Hirama, K. (1995) Material property changes of granitic rock under long-term immersion in hot water. Engineering Geology, 40, pp. 29-39.
Suzuki, K., Oda, M., Yamazaki, M., Kuwahara, T. (1998) Permeability changes in granite with crack growth during immersion in hot water. Int. J. Rock Mech. Min. Sci., V. 35, No. 7, pp. 907-921.
Vaughan, P. J., Moore, D. E., Morrow, C. A., Byerlee, J. D. (1986) Role of Crack in Progressive Permeability Reduction During Flow of Heated Aqueous Fluids Through Granite. J. Geophys. Res., 91(B7): 7517-7530.
Walsh, J. N. (1992) Use of multiple internal standards for high-precision, routine analysis of geological samples by inductively coupled- atomic emission spectrometry. In: I. Javis and K. E. Javis (Guest-Editors), Plasma Spectrometry in the Earth Science. Chem. Geol., 95, p. 113-121.
Waltehr, J. V., and Wood, B. J. (1986) Fluid-Rock Interactions During Metamorphism, Springer-Verlag, V5, 194-211.
Wang, H. W. and Heard, H. C., 1985, Predication of elastic moduli via crack density in pressurized and thermally stressed rock. J. Geophys. Res., 90 (B12): pp. 10,342-10,350.
Wherli B. (1989) Monte Carlo simulations of surface morphologies during mineral dissolution. J. Coll. Interface Sci. 132, 230-242.
Wollast, R. (1967) Kinetics of the alteration of K-feldspar in buffered solutions at low temperature. Geochim. Cosmochim. Acta., V. 31, pp. 635-648.
Wood, B.J., Walther J. V. (1983) Rates of hydrothermal reactions. Science 222, 413-415.
指導教授 陳維民(Wei-Min Donal Chen) 審核日期 2004-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明