博碩士論文 90624013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.149.234.90
姓名 李春明(Chun-Ming Lee)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
(Stability of rock slope with non-structural control failures )
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討
★ 軟弱沉積岩層滲透異向性之探討★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例
★ 大型岩崩之潛勢與災害影響範圍之研究★ 節理岩體滲透係數之先天異向性與應力引致異向性
★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究
★ 土石流潛勢溪流特性分類★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響
★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象
★ 山崩引致之堰塞湖天然壩穩定性之量化分析★ 出磺坑背斜構造發育之三角剪切模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文藉以岩體分類的觀點,探討非構造性控制破壞下岩坡之最陡安全開挖坡度。基於地質強度指標GSI,結合非線性之Hoek and Brown (2002)破壞準則以及線性之摩爾-庫倫破壞準則,以迴歸獲得不同坡高應力範圍下之岩體強度參數c’’與 ;再利用Janbu邊坡穩定分析設計圖,反推不同坡高與不同岩體強度下,安全係數(FS)為1時的岩坡開挖坡度,並將其計算結果展繪為邊坡反應曲線Slope performance curve。
研究結果顯示:(1)不同坡高所造成之應力範圍,會直接影響岩體強度參數的評估,因此在評估岩坡穩定坡度時所使用之強度參數,應將坡高或應力條件納入考慮;(2)岩坡的岩石單壓強度,為非構造控制破壞之最陡安全開挖坡度中較為重要影響因素,相對而言,岩性係數顯得不那麼敏感;(3)岩坡之開挖施工擾動會直接影響岩體強度,尤其當岩體構造GSI評值不大時,岩體強度更會明顯降低;(4)依不同岩石強度與岩性展繪之GSI Slope performance curve可用來合理且簡易的評估岩坡最陡安全開挖坡度。
摘要(英) Stability of rock slope with non-structural control failures is studied in this thesis. Based on Non-linear Hoek-Brown failure criterion (2002), cohesion c’’ and frictional angle of the rock slope for different height (different stress range) are determined in conjunction with Geological Strength Index GSI. The maximum excavation angle (FS=1) with non-structural control failures of rock slope for different height can be evaluated using Janbu slope-stability chart. Consequently, GSI-based slope performance curves are constructed.
The important results are summarized as follows: (1) Rock mass strength parameters are functions of stress range. Therefore, the height of rock slope should be taken into consideration for evaluating the maximum excavation angle. (2) Unconfined compressive strength of intact rock is a primary factor for evaluation of the maximum excavation angle with non-structural control failures. Relatively, the effect of material constant on the maximum excavation angle is minor. (3) Disturbance of excavation reduces the rock mass strength. The lower the GSI is the effect is more predominant. (4) GSI-based slope performance curves, taking the intact rock strength and material constants into consideration, are useful for evaluation the maximum excavation angle of rock slope.
關鍵字(中) ★ 邊坡反應曲線
★ 邊坡穩定分析
★ 地質強度指標
★ 岩體分類法
★ 最陡安全開挖坡度
★ 岩石邊坡
關鍵字(英) ★ slope performance curves
★ slope stability
★ Geological Strength Index
★ rock mass classification
★ maximum excavation angle
★ rock slope
論文目次 目 錄
內 容 頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
致 謝 Ⅲ
目 錄 Ⅳ
表 目 錄 Ⅵ
圖 目 錄 Ⅶ
第一章 緒論 1
1.1 岩坡最陡安全開挖坡度的重要性 1
1.2 岩坡破壞模式與岩坡穩定性評估之方法 1
1.3 岩坡最陡安全開挖坡度與岩體分類法 2
1.4 論文架構 3
第二章 文獻回顧 5
2.1岩坡構造性與非構造性控制破壞 5
2.2岩體分類法與非構造性控制岩坡最陡安全開挖坡度 5
2.2.1 RMR及RMS岩體分類系統與穩定開挖坡度 6
2.2.2 MRMR system 11
2.2.3 SSPC system 14
2.3小結與問題描述 15
第三章 非構造性控制破壞之岩坡最陡安全開挖坡度 16
3.1非構造控制破壞機制 16
3.2非構造控制破壞之岩坡最陡安全開挖坡度之研究方法 16
3.3以岩體分類評估岩坡之岩體強度 18
3.3.1 RMR與岩體強度參數 18
3.3.2 GSI與岩體強度參數 19
3.3.3 Hoek and Brown破壞準則 21
3.4非構造控制之岩坡穩定分析與最陡安全開挖坡度 36
3.4.1利用RMR評值推求Slope performance curve 36
3.4.2利用GSI分類法推求Slope performance curve 38
第四章 案例驗證 44
4.1案例來源說明 44
4.2引用自Sjoberg (1996)之案例 44
4.2.1穩定且高大之自然邊坡 44
4.2.2穩定且高大之露天礦場邊坡 46
4.2.3非構造性破壞之露天礦場邊坡 48
4.3引用Moon等人(2001)之論文案例 49
4.4區別構造性控制破壞之最陡安全開挖坡度 51
第五章 結論與建議 52
5.1結論 52
5.2建議 53
參考文獻 55
附錄A 擾動係數(D=0)之岩體強度 59
附錄B 擾動係數(D=1)之岩體強度 71
附錄C 擾動係數(D=0)之GSI slope performance curve 83
表目錄
表 別 說 明 頁次
表2.1 Laubscher (1977) MRMR評值與最陡開挖安全坡度 11
表3.1 5組RMR評值所對應之岩體強度 36
表3.2 ISRM岩石單壓強度依 39
表3.3 分析變數一覽表 39
圖目錄
圖 別 說 明 頁次
圖1.1 論文架構 4
圖2.1 Laubscher (1975) RMR評值與岩坡最陡開挖安全坡度 6
圖2.2 Hall (1985) RMR評值與最陡開挖安全坡度 7
圖2.3 Selby (1980) RMS值評值與長期穩定坡度 8
圖2.4 RMS評值轉換RMR評值與自然邊坡長期穩定坡度 9
圖2.5 Orr (1992) RMR評值與長期穩定最陡開挖坡度 10
圖2.6 RMR及RMS與穩定坡度之迴歸分析研究結果 11
圖2.7(a) Haines and Terbrugge (1991)展繪MRMR Slope
performance curve 12
圖2.7(b) Duran and Douglas (1999)展繪MRMR Slope
performance curve 13
圖2.8 SSPC非構造性破壞之穩定程度百分比 14
圖3.1 Janbu邊坡穩定分析設計圖 17
圖3.2 研究方法示意圖 .17
圖3.3(a) RMR評值與岩體c值之關係 19
圖3.3(b) RMR評值與岩體φ值之關係 19
圖3.4 Geological Strength Index 20
圖3.5 完整岩石之岩性係數 24
圖3.6 Hoek and Brown (1995)破壞準則強度參數
與凝聚力之關係 24
圖3.7 Hoek and Brown (1995)破壞準則強度參數
與摩擦角之關係 27
圖3.8 Hoek and Brown (2002)破壞準則強度參數
與凝聚力之關係 27
圖3.9 Hoek and Brown (2002)破壞準則強度參數
與摩擦角之關係 26
圖3.10 D=0,應力範圍於 H/ =1/3之凝聚力 30圖3.11 D=0,應力範圍於 H/ =1/3之摩擦角 30
圖3.12 D=0,應力範圍於 H/ =100之凝聚力 31
圖3.13 D=0,應力範圍於 H/ =100之摩擦角 31
圖3.14 D=0,應力範圍於 H/ =0.01之凝聚力 32
圖3.15 D=0,應力範圍於 H/ =0.01之摩擦角 32
圖3.16 兩種不同開炸方式差異對岩坡受擾度程度影響 33
圖3.17 D=0,之應力範圍於 H/r=1之凝聚力 34
圖3.18 D=0,之應力範圍於 H/r=1之摩擦角 34
圖3.19 D=1,之應力範圍於 H/r=1之凝聚力 35
圖3.20 D=1,之應力範圍於 H/r=1之摩擦角 35
圖3.21 RMR之Slope performance curve. 37
圖3.22 RMR評值與穩定坡高坡度. 37
圖3.23 mi=7,岩石單壓強度為R1 41
圖3.24 mi=7,岩石單壓強度為R5 41
圖3.25 mi=16,岩石單壓強度為R1 42
圖3.26 mi=16,岩石單壓強度為R5 42
圖3.27 mi=30,岩石單壓強度為R1 43
圖3.28 mi=30,岩石單壓強度為R5 43
圖4.1 案例岩性為雲母片岩,岩石單壓強度為R4 45
圖4.2 案例岩性為輝長岩,岩石單壓強度為R4 45
圖4.3 案例岩性為花崗片麻岩,岩石單壓強度為R4 46
圖4.4 案例岩性為石英岩,岩石單壓強度為R5 47
圖4.5 案例岩性為板岩,岩石單壓強度為R3 48
圖4.6 案例岩性為粉砂岩或泥岩,岩石單壓強度為R1 49
圖4.7 案例岩性為泥岩與粉砂岩,岩石單壓強度為R2 50
參考文獻 參考文獻
Bieniawski, Z. T., 1973. “Engineering classification of jointed rock masses,” Trans. S. Afr. Inst. Civ. Eng, Vol. 15, pp. 355-344.
Bieniawski, Z. T., 1976. “Rock mass classification in rock engineering,” In Proc. Symp. Exploration for Rock Eng, Vol. 1, pp. 97-106.
Bieniawski, Z. T., 1989. Engineering Rock Mass Classification, Wiley, New York.
Barton, N. R., and Choubey, V., 1977. “The shear strength of rock joints in theory and practice,” Rock Mech, 10(1-2), pp. 1-54.
Duran, A., and Douglas, K., 1999. “Do slopes designed with empirical rock mass strength criteria stand up?” 9th ISRM International Congress on Rock Mechanics, Paris, France, Vol. 1, pp. 87-90.
Hall, B. E., 1985. “Preliminary estimation of slope angle,” Symp.on Rock Mass Characteristics, pp. 12-21.
Hoek E., and Bray J. W., 1981. Rock Slope Engineering, 3nd ed., The Institution of Mining and Metallurgy.
Hoek, E., Kaiser, P. K., and Bawden. W. F., 1995. Support of underground excavations in hard rock, Rotterdam: Balkema.
Hoek E., Read J., Karzulovic A., and Chen Z. Y., 2000. “Rock slopes in civil and mining engineering, ” Proc.GeoEng, Melbourne. cd-rom.
Hoek E., and Brown, E. T., 1997. “Practical estimates of rock mass strength,” Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts,Vol. 34, No. 8, pp. 1165-1186.
Hoek, E., Torres, C. T., and Corkum, B., 2002. “Hoek-Brown failure criterion:2002 edition,” Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, 1-6..
Haines A., and Terbrugge P. J., 1991. “Preliminary estimation of rock slope stability using rock mass classification systems,” Proc. 7th Cong. on Rock Mechanics, ISRM, Aachen, Germany. 2.ed. Wittke W. publ. Balkema, Rotterdam, pp. 887-892.
Hack, H. R. G. K., 1998. “Slope Stability Probability Classification,” ITC Delft Publication, Vol. 43, Enschede, Netherlands, pp. 273.
Hougton, D. A., 1976. “The role of rock quality indices in the assessment of rock masses,” Proc. Symp. Expl. Rock Eng., Johannesburg, Balkema, Cape Town, Vol. 1, pp. 129–135.
ISRM, 1981. Rock Characterization, Testing and Monitoring, ISRM suggested methods. ed. E.T. Brown.publ. Pergamon Press, Oxford, pp. 211.
Janbu, N., 1973. Slope stability computation. In: Hirsch.eld, R.C., Paulos, S.J. (Eds.), Embankment Dam Engineering: Casagrande Memorial Volume. Wiley, New York, pp. 47–87.
Laubscher, D. H., 1975. “Class Distinction in Rock Masses,” Coal, Gold and Base Minerals of Southern Africa, pp. 37-50.
Laubscher, D. H., 1977. “Geomechanics classification of jointed rock masses mining applications,” Trans. Instn. Min. Metall, Vol. 86, A1-8.
Laubscher D. H., 1990. “A geomechanics classification system for the rating of rock mass in mine design,” Journal South African Institution Mining and Metallurgy, Vol. 90, pp. 257–73.
Lindsay P., Campbell R. N., Fergusson D. A., Gillard G. R., and Moore T. A., 2001. “The slope stability probability classification, Waikato Coal Measures, New Zealand,” International Journal of Coal Geology, Vol. 45, pp. 127-145.
Moon, B. P., Selby, M.J. 1983. “Rock Mass Strength and Scarp Forms,” Southern Africa, Geografisika annaler.
Moon, V. G., Russell, G., and Stewart, M., 2001. “The value of rock mass classification systems for weak rock masses: a case example from Huntly, New Zealand,” Engineering Geology, Vol. 61., pp. 53-67.
Norrish N. I., and Wyllie D.C., 1996. “Rock slope stability analysis,” Landslide, investigation and mitigation, Turner and Schuster eds., Transportation Research Board Special Report 247.
Orr, C. M., 1992. “Assessment of rock slope stability using the Rock Mass Rating(RMR) system,” the Australian Institute of Mining and Metallurgy ,Vol. 2, pp. 25-29.
Robertson A. M., Estimating weak rock strength. AIME - SME ,Annual meeting. Phoenix, AZ., preprint No 88-145, AIME-SME. (1988).
Romana M. R., 1985. “New adjustment rating for application of the Bieniawski classification to slopes,” Proc.Int. Symp. Rock Mechanics Mining Civ. Works, ISRM, Zacatecas, Mexico, pp 59-63.
Romana M. R., 1993. “A Geomechanical Classification for Slope :Slope Mass Rating,” Comprehensive Rock Engineering, Vol. 3, pp. 575-599.
Selby, M. J., 1980. “A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand,” Zeitschrift for Geomorphologie, Vol. 24, No.1, pp. 31-51.
Selby, M. J., 1993. Hillslope Materials and Processes, Oxford University Press, Oxford, UK, pp. 451.
Serafim, J. L., and Pereira, J. P., 1983. “Consideration of the Geomechanics Classification of Bieniawski,” Proc. Intnl. Symp. Engng. Geol. And Underground Construction, Lisbon, Portugal, pp. 1133-44.
Sonmez, H., and Ulusay, R., 1999. “Modifications to the geological strength index (GSI) and their applicability to stability of slopes,” International Journal of Rock Mechanics and Mining Sciences, Vol. 36, pp. 743–760.
Jonny Sjoberg., 1996. “Analysis of large scale rock slope,” Ph.D, Department of Civil and Mining Engineering, Lulea University of Techonlogy .
Zekai Sen., Bahaaeldin H. Sadagah., 2003. “Modified rock mass classification system by continuous rating.” Engineering Geology, Vol. 67, 269–280.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2004-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明