博碩士論文 90642003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.207.238.169
姓名 羅仲良(Chung-Liang Lo)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 板塊邊界地震引起之重力位能變化
(The earthquake-induced gravitational potential energy change at plate boundaries)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 南海北部地體構造之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於板塊之間聚合或分離的相對運動在板塊邊界區域特別活躍,因此地震活動度在板塊邊界區域也特別旺盛。地震的發生意味著在地殼或是岩石圈存在同震的永久變形,其中在徑向的位移將造成地球的重力位能改變。本論文利用因地震引起的同震變形所造成的重力位能變化,探討地體構造及大地應力之關聯性。東亞地區存在許多板塊邊界,大致上顯示隱沒帶地區因地殼受側向應力擠壓造成本身重力位能增加;反之,在板塊張裂地區地殼因受側向應力拉張造成本身重力位能減少。若以海溝為軸,我們將隱沒帶區分為隱沒帶前後二區,多數重力位能變化分布在板塊隱沒前的區域以減少為主,這可能肇因於板塊隱沒前的撓曲行為;而在海溝之後板塊隱沒區域,重力位能因板塊之間的耦合作用而增加。台灣位於菲律賓海板塊與歐亞板塊聚合處,活躍的板塊運動促成台灣造山運動以及大量的天然地震,長期累積的地殼變形應可以反應在重力位能的變化上。
利用中央研究院的寬頻地震網(BATS)自1995至2003的地震目錄,計算此間因地震引起的地殼重力位能變化,結果顯示在台灣東部區域,因呂宋島弧隨菲律賓海板塊向北擠壓所造成的地殼重力位能增加,明顯的反應在呂宋島弧以及琉球海溝位置;此外,若將台灣南部外海、西南區域、中央山脈、北部中央山脈到台灣東北區域視為台灣造山序列,從地震釋放的重力位能變化可清楚的呈現造山運動從初期碰撞,劇烈碰撞至後碰撞期的整個完整過程,其分布與我們所認知台灣的造山運動吻合。
整個台灣地區在1995年7月至2003年12月因地震引起的地殼重力位能變化為+1.03E+17焦耳,整體平均功率為-2.07E+10瓦特,約為全球因地震減少的重力位能的百分之一。雖然1999年的921集集主震及車籠埔斷層帶破裂在台灣西部麓山帶,但集集地震序列主要貢獻的地殼重力位能變化卻存在中央山脈地區。因此,集集地震可能扮演著誘發長期累積在中央山脈地殼內的應力的角色。
就全球中洋脊等板塊張裂地區,其地殼重力位能變化伴隨地殼擴張速率不同有所改變。平均而言,中洋脊擴張速率較慢地區,其地殼重力位能減少量較多;反之,中洋脊擴張速率較快地區,其地殼重力位能減少量相對較少。全球中洋脊從1976到2004年,因地震改變的地球重力位能相當於2.1E+19焦耳。
摘要(英) Plate boundaries generate enormous earthquakes. The co-seismic change of gravitational potential energy is caused by a mass redistribution due to the earthquake faulting. Generally, the crustal gravitational potential energy is increasing in compressive areas, while the crustal gravitational potential energy is decreasing in extensional areas. The change of gravitational potential energy distribution shows that most of the subduction zones exhibits compressive stress while the spreading centers/backarc riftings undergo extensional stress. However, there is difference of gravitational potential energy change on both sides of the trench: the crustal gravitational potential energy at fore-trench area shows the energy loss while at the back-trench distributes the energy gain. The decrease of gravitational potential energy may be caused by the outer rise of the subducted slab and; oppositely, the increase of gravitational potential energy was induced by the slab subduction during plate convergence. This phenomenon appears at most of subduction zones in East Asia.
The Philippine Sea Plate is converging against the Eurasian Plate with a velocity of 7-8 cm/yr near Taiwan, which has caused the Taiwan orogenesis and induced abundant earthquakes. We have examined the corresponding gravitational potential energy change by using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from July 1995 to December 2003. Our results show that the variation of the crustal gravitational potential energy strongly correlates with different stages of the orogenesis. Except for the western Okinawa Trough and the southern Taiwan, most of the colliding regions in Taiwan exhibit a gain of crustal gravitational potential energy. In contrast, the lithospheric gravitational potential energy change in the Taiwan region exhibits a reverse pattern of the crustal gravitational potential energy change. For the whole Taiwan region, the earthquake-induced crustal gravitational potential energy change and the lithospheric gravitational potential energy change during the observation period are +1.03E+17 joules and -1.15E+17 joules, respectively. The average rate of the whole gravitational potential energy change in the Taiwan region is very intense and is equal to -2.07E+10 watts, corresponding to about one per cent of the global GPE loss induced by earthquakes. During the past century, the largest and disaster earthquake, the Chi-Chi earthquake, has occurred. The Chi-Chi earthquake sequence provides most of the gravitational energy gain in the middle central Taiwan, instead of the western foothill where the Chi-Chi main shock locates. It implies that the Chi-Chi main shock may trigger the release of the cumulative strain in the crust of middle Taiwan.
Finally, the analysis of the global divergent mid-ocean ridge distribution of gravitational potential energy change shows that the cumulative gravitational potential energy change has strong nonrandom tendency with the ridge spreading rate. The fast spreading ridge shows the relatively low gravitational potential energy change. In total, the gravitational potential energy change caused from the earthquake at global mid-ocean ridge is equal to 2.1E+19 joules from 1976 to 2004.
關鍵字(中) ★ 地震
★ 重力位能變化
★ 造山運動
★ 集集地震
★ 隱沒帶
★ 中洋脊
關鍵字(英) ★ mid-ocean ridge
★ earthquake
★ gravitational potential energy
★ orogenesis
★ Chi-Chi earthquake
★ subduction zone
論文目次 摘要 i
Abstract ii
誌謝 iv
Contents v
List of figures viii
List of tables xii
1. Introduction 1
2. The calculation of earthquake-induced gravitational potential energy change and data 7
2.1 Introduction……………………………………………………………………7
2.2 Methodology…………………………………………………………………. 8
2.3 Data catalogue………………………………………………………………..14
3. The earthquake-induced gravitational potential energy change in East Asia 17
3.1 Introduction…………………………………………………………………..17
3.2 General distribution of in SE Asia………………………………….17
3.3 The distribution of Mariana Trench………………………………...18
3.4 The distribution of the Ryukyu Trench…………………………….19
3.5 The distribution of the Manila and Philippine Trench……………..20
3.6 The at Java Trench………………………………………………….21
3.7 Discussion……………………………………………………………………21
3.8 Summary…………………………………………………………………......24
4. The earthquake-induced gravitational potential energy change in the active Taiwan orogenic belt 32
4.1 Introduction…………………………………………………………………..32
4.2 Earthquake data………………………………………………………………33
4.3 Spatial and temporal distribution of the …………………………….33
4.4 Regional tectonics and ……………………………………………...34
4.4.1 Region A (Luzon Arc convergent zone I)……………………………...34
4.4.2 Region B (onshore/offshore south Taiwan)……………………………34
4.4.3 Region C (Luzon Arc convergent zone II)……………………………..35
4.4.4 Region D (southwest Taiwan)………………………………………….35
4.4.5 Region E (central Taiwan)……………………………………………..35
4.4.6 Region F (northern Taiwan)……………………………………………36
4.4.7 Region G (westernmost Ryukyu Arc)………………………………….36
4.4.8 Region H (westernmost Okinawa Trough)…………………………….36
4.5 Relationship of the in subduction zones……………………………37
4.6 Relationship of the and the orogenesis……………………………..38
4.7 Summary……………………………………………………………………..39
5. Change of crustal gravitational potential energy in the Taiwan orogen induced from the Chi-Chi earthquake sequence 53
5.1 Introduction…………………………………………………………………..53
5.2 Chi-Chi earthquake sequence………………………………………………..53
5.3 Temporal change of the cumulative crustal GPE…………………………….54
5.4 Spatial distribution of the crustal …………………………………...55
5.5 Discussion……………………………………………………………………56
5.5.1 Existing intrinsic crustal and lithospheric GPE in the Taiwan orogen...56
5.5.2 Isostasy and …………………………………………………...57
5.6 Summary……………………………………………………………………..58
6. The change of gravitational potential energy at global divergent plate boundary 64
6.1 Introduction…………………………………………………………………..64
6.2 Earthquake and Ridge Spreading Rate Data Ridge and Spreading Center…..65
6.3 Results………………………………………………………………………..65
6.4 Discussion……………………………………………………………………66
6.4.1 Ridge topography V. S. ridge spreading rate…………………………..67
6.4.2 Crustal V.S. ridge spreading rate……………………………..67
6.4.3 Geoid V.S. ridge spreading rate………………………………………..68
6.5 Summary……………………………………………………………………..69
7. Conclusion 75
Bibliography 77
參考文獻 Alterman, Z., H. Jarosch and C. L. Pekeris, 1959. Oscillations of the Earth. Proc. Roy. Soc. Ser. A. 252, 80-95.
Bell, R. E. and W. R. Buck, 1992. Crustal control of ridge segmentation inferred from observations of the Reykjanes Ridge. Nature, 357, 583-586.
Chao, B. F. and R. S. Gross, 1987. Changes in the earth’s rotation and low-degree gravitational field induced by earthquakes. Geophys. J. Int., 91, 569-596.
Chao, B. F. and R. S. Gross, 1995. Changes in Earth’s rotational energy induced by earthquakes. Geophys. J. Int., 122, 776-783.
Chao, B. F., R. S. Gross and Da-Nang Dong, 1995. Changes in global gravitational energy induced by earthquakes. Geophys. J. Int., 122, 784-789.
Dahlen, F. A., 1977. The balance of energy in earthquake faulting. Geophys. J. R. astr. Soc., 48, 239-261.
Dahlen, F. A. and J. Tromp, 1998. Theoretical Global Seismology. Princeton Univercity Press, Princeton, NJ, 1025 pp.
Dziewonski, A. M. and D. L. Anderson, 1981. Preliminary reference Earth model. Phys. Earth planet. Inter., 25, 297-356.
Dziewonski, A., T.-A. Chou and J. Woodhouse, 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825-2852.
Gahalaut, V. K., B. Nagarajan, J. K. Catherine and S. Kumar, 2006. Constraints on 2004 Sumatra-Andaman earthquake rupture from GPS measurements in Andaman-Nicobar Islands. Earth Planet. Sci. Lett., 242, 365-374.
Gvirtzman, Z. and R. J. Stern, 2004. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak place coupling. Tectonics, 23, TC2011.
Hsu, S.-K. and J.-C. Sibuet, 1995. Is Taiwan the result of arc-continent or arc-arc collision?. Earth Planet. Sci. Lett., 136, 315-324.
Hsu, S.-K., J.-C. Sibuet, S. Monti, C.-T. Shyu and C.-S. Liu, 1996. Transition between the Okinawa Trough backarc extension and the Taiwan collision: New insights on the southernmost Ryukyu subduction zone. Mar. Geophys. Res., 18, 163-187.
Hsu, S.-K., 2001. Lithospheric structurebuoyancy and coupling across the southernmost Ryukyu subduction zone: an example of decreasing plate coupling. Earth Planet. Sci. Lett., 186, 471-478.
Hsu, S.-K. and C.-L. Lo, 2004. Change of crustal gravitational potential energy in the Taiwan orogen by the Chi-Chi earthquake sequence. Earth Planet. Sci. Lett., 222, 573-581.
Hu, J.-C., S.-B. Yu, H.-T. Chu and J. Angelier, 2002. Transition tectonics of northern Taiwan induced by convergence and trench retreat, in Byrne, T.B., & Liu, C.-S., eds., Geoloy and Geophysics of an Arc-Continent Collision. Taiwan. Geol. Soc. Am. Special Paper, 358, 147-160.
Kao, H., S.-S. J. Shen and K.-F. Ma, 1998. Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. J. Geophs. Res., 103, 7211-7229.
Kao, H. and W.-P. Chen, 2000. The Chi-Chi earthquake sequence: active, out-of-sequence thrust faulting in Taiwan. Science, 288, 2346-2349.
Lin, J. and P. Morgan, 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophys. Res. Lett., 19. 13-16.
Liu, C.-C., 1995. The Ilan plain and the southwestward extending Okinawa Trough. J. Geol. Soc. China, 38, 229-242.
Lo, C.-L. and S.-K. Hsu, 2005. Earthquake-induced gravitational potential energy change in the active Taiwan orogenic belt. Geophys. J. Int., 162, 169-176.
Love, A. E. H., 1927. The Mathematical Theory of Elasticity. Cambridge Univ. Press, London and New York.
Lu, C.-Y. and K. J. Hsu, 1992. Tectonic evolution of the Taiwan mountain belt. Pet. Geol. Taiwan, 27, 21-46.
Ma, K.-F., C.-T. Lee, Y.-B. Tsai, T.C. Shin and J. Mori, 1999. The Chi-Chi, Taiwan earthquake: large surface displacements on an inland thrust fault. Eos Trans. Amer. Geophys. U., 80, 605-611.
Mantovani, M. Viti, D. Babbucci, C. Tamburelli and D. Albarello, 2001. Back arc extension: which driving mechanism?. Journal of the Virtual Explorer, 3, 17-45.
Molnar, P. and W.-P. Chen, 1983. Focal depths and fault plane solutions of earthquakes under the Tibetan plateau. J. Geophys. Res., 88, 1180-1196.
Müller, R. Dietmar, W. R. Roest, J.-Y. Royer, L. M. Gahagan and J. G. Sclater, 1997. Digital isochrones of the world’s ocean floor. J. Geophys. Res., 102, 3211-3214.
Nakamura, M., 2004. Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data. Earth Planet. Sci. Lett., 217, 389-398.
Nishimura, S., M. Hashimoto and M. Ando, 2004. A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc. Phys. Earth planet. Inter., 142, 185-203.
Okamoto, T. and T. Tanimoto, 2002. Crustal gravitational energy change caused by earthquakes in the western United States and Japan. Earth Planet. Sci. Lett., 195, 17-27.
Shyu, C.-T., M.-C. Chih, S.-K. Hsu, C. Wang and B. Karp, 1996. Northern Luzon Arc: location and tectonic features from magnetic data off eastern Taiwan. TAO, 7, 535-548.
Sibuet, J.-C., J. Letouzey, F. Barrier, J. Charvet, J.-P. Foucher, T. W. C. Hilde, M. Kimura, L.-Y. Chiao, B. Marsset, C. Muller and J.-F. Stephane, 1987. Back arc extension in the Okinawa Trough. J. Geophys. Res., 92, 14041-14063.
Sibuet, J.-C., B. Deffontaines, S.-K. Hsu, N. Thareau, J.-P. Le Formal, C.-S. Liu and the ACT party, 1998. Okinawa Trough backarc basin: early tectonic and magnetic evolution. J. Geophys. Res., 103, 30245-30267.
Sibuet, J.-C. and S.-K. Hsu, 2004. How was Taiwan created?. Tectonophysics, 379, 159-181.
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. J. Geol. Soc. China, 4, 67-89.
Takeuchi, H. and M. Saito, 1972. Seismic surface waves in : B. A. Bolt (Ed.), Seismology: Surface Waves and Free Oscillations (Methods in Computational Physics 11). Academic Press, New York, pp. 217-295.
Tanimoto, T. and T. Okamoto, 2000. Change of crustal potential energy by earthquakes: an indicator for extensional and compressional tectonics. Geophys. Res. Lett., 27, 2313-2316.
Tanimoto, T., T. Okamoto and F. Terra, 2002. Tectonics signatures in coseismic gravitational energy change. Geophys. J. Int., 149, 490-498.
Teng, L. S., 1990. Late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
Wang, K.-L., S.-L. Chung, C.-H. Chen, R. Shinjo, T. F. Yang and C.-H. Chen, 1999. Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308, 363-376.
Wessel, P. and W. H. F. Smith, 1998. New improved version of Generic Mapping Tools released. EOS Trans. Amer. Geophys. U., 79, 579.
Yeh, Y.-H., E. Barrier, C.-H. Lin and J. Angelier, 1991. Stress tensor analysis in the Taiwan area from focal mechanism of earthquakes. Tectonophysics, 200, 267-280.
Yu, S.-B., H.-Y. Chen and L.-C. Kuo, 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明