博碩士論文 90642006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.214.224.224
姓名 葉一慶(Yi-Ching Yeh)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 南海北部地體構造之研究
(Tectonics of the northern South China Sea)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 南海(South China Sea)為西太平洋地區之一的邊緣海(marginal sea basin)。其西、南兩面為歐亞大陸地殼圍繞,其東為以馬尼拉海溝(Manila Trench)為界。由於南海的張裂與整個東南亞地體構造演化有關,過去二十年來,有許多學者提出了許多模型試圖可合理解釋南海的地體構造及其演化歷史。其中,Tapponnier 等人提出了著名的碰撞-逃逸理論,南海的張裂與此運動很可能相關。另外,Briais等人整編了南海海域的磁力資料並重新分析,其結果顯示南海應於距今30.1百萬年前(磁力條帶 C11)開始張裂並於距今16.7百萬年前(磁力條帶C5c)時停止張裂,其間經歷了三次張裂方向的改變。但無論是上述那個模型由於其運用的地球物理資料僅限於北緯19度以南,其研究成果實難清楚描述北緯19度之地體構造。而北緯十九度以北(相當於台灣西南外海)之北部南海應為更老之南海海洋地殼,此部分在南海演化史佔了何角色且與台灣造山帶的關係為何,皆為本論文之研究重點。
本研究使用了舊有及新蒐集的所有種類的海洋及陸上地球物理資料,包含了水深、多頻道震測、重力、磁力等資料。並將上述資料進行綜合分析。其中,新整編的磁力異常圖西由東經116度起至東經123度; 南由北緯16度起至北緯26.5度。其結果顯示了南海北部確實有數條近乎東西走向的磁力條帶分佈,這暗示著海洋地殼張裂的證據。而磁力定年的結果顯示南海北部存在著更老的海洋地殼,其年代可追溯至距今37個百萬年前(磁力條帶C17),其半擴張速率約44 mm/yr。此外,根據兩條跨越大陸邊緣的震測線之重力模擬結果與磁化強度分析結果顯示,南海北部的大陸海洋邊界(Continent Oceanic Boundary)約落在地殼開始強烈的減薄處且此處恰好磁化強度正位於由最低區開始轉變為正之處。另外,多頻道震測資料分析的結果顯示,琉球-呂宋轉形邊界(Ryuku-Luzon Transform Boundary, LRTPB)兩側的聲波基盤(acoustic basement)深度有顯著不同:由南側的3.5 km ~ 4 km至北側的4.5 km ~ 6.5 km而重力順推模型的結果亦顯示了LRTPB下方的地殼確實有減薄的趨勢。此外,其上部地殼的震測結果顯示了位於LRTPB處地殼確實受到相當顯著的變形,而此變形僅限於基盤附近。此可說明LRTPB可能為一構造邊界可進一步推測為南海海洋地殼的最北邊界。
另外,南海北部的C11至C17的磁力條帶可往西南與Briais等人所整編的磁力條帶連接,此也同時意味著南海北部為中部南海的延伸亦為整個南海的一部份。且在早期南海張裂時期約在距今27.9百萬年前~28.7百萬年前(磁力條帶C9~C10)間南海由西北東南的張裂方向改為南北向張裂。此張裂方向的改變的事件可能可對應到此區域一近基盤的強反射面T1。此外,約17.6百萬年前(磁力條帶C5d)LRTPB已停止張裂,但LRTPB北方菲律賓海岩石圈仍然向西北方向隱沒,此作用很可能使得南海北部地層受擠壓作用,而這擠壓作用很可能與另一強反射面T2的形成有關。
將南海北部的磁力異常資料進行逆推,逆推結果顯示南海北部大陸邊界存在一高磁化強
度高區,此高區可由南海北部大陸邊緣一直進入台灣的西南部陸上。與過去蒐集的震測及鑽井資料比對,此磁化強度高區很可能為過去玄武岩質岩漿噴發凝固後受磁化的結果,而此岩漿噴發年代約由曉新世(Paleocene)晚期至史新世(Eocene)中期,此很可能與早期南海張裂相關。此外,本區域的地震分佈很可能與磁性地殼基盤分佈有一定關係。如將過去發生的歷史地震(1990年前)與中央氣象局的短週期目錄規模超過6的地震繪於磁化強度圖上。其結果顯示台灣西部的大規模災害地震幾乎都發生在磁化強度的低區,而恰好均圍繞著一相對高磁化強度地塊-鹿港高區(LHM)。這說明著LHM很可能為一個相對較堅硬的地塊,而板塊聚合的應力均順著這個邊界釋放。
摘要(英) The South China Sea (SCS) is one of the marginal sea basins in the western Pacific area. The SCS is bounded by Eurasia continental crust in west, south and Manila Trench in east. In past two decade, several models were tried to describe the tectonic and its evolution of the SCS. Tapponnier et al (1986) proposed so-called “collision-escape” model to demonstrate the possible process of the opening of the SCS. Briais et al (1993) re-compiled then analyzed the magnetic data collected by Mainland China and the result shows the SCS probably started spreading at 30.1 Ma ago (magnetic lineation C11) and stopped spreading at 16.7 Ma ago (magnetic lineation C5c) including three time spreading direction change. Whatever the model mentioned previous, is not given a comprehensive tectonic of view further 19 °N in latitude. The crust further 19 °N in latitude is few study and probably belongs to oceanic domain. What role of the tectonic this part play in the whole SCS evolution history and relationship to the Taiwan orogen ? This thesis is tried to answer that.
The past collected and resent collected marine and land bathymetry, multichannel seismic, gravity and magnetic data were combined to analyze in this study. The newly compiled magnetic anomaly map is from 116° E ~ 123°E and 16°N ~ 26.5°N that shows several E-W trending magnetic lineations which implied the existence of the oceanic crust. The magnetic dating result was showed the existence of the older oceanic crust in the northern SCS that is 37 Ma (magnetic lineation C17) and carried 44 mm/yr half spreading rate in the older spreading stage. Based on the forward gravity model across the northern SCS margin with magnetic inversion result, the continent and ocean boundary is probably dropped at the highly crustal deformation and relative low magnetization area. Furthermore, the Luzon-Ryuku Transform Boundary (LRTPB) probably is the tectonic boundary that revealed different acoustic basement relief from 3.5 km ~ 4km depth in south to 4.5 km ~ 6.5 km depth in north. The forward gravity model also shows the thinned crust distributed beneath LRTPB and the upper crust is also performed highly shearing deformation accurrence close to basement. Therefore, LRTPB probably is a northern boundary of the oceanic crust of SCS.
Besides, the part of C11~C17 oceanic crust could be prolongated southwestern ward and linked to the central part of the SCS. In the early spreading stage, the spreading direction was changed from NW-SE to N-S between 27.9 Ma to 28.7 Ma (magnetic lineation C9~C10) that corresponded with the tectonic event T1. Otherwise, at 17.6 Ma (magnetic lineation C5d), the LRTPB was ceased but active subduction still occurred at north that probably resulted in the compressed the sedimentary layers in south of the LRTPB. That probably is linked to the development with the tectonic event T2.
Finally, the inversion of the magnetic anomaly is showed the relative high magnetization belt distributed along the northern SCS margin that extended to southern Taiwan. Combined with multichannel seismic and well log analysis, the late Paleocene to mid-Eocene basaltic type eruption is probably related to the high magnetization and the seafloor spreading of the SCS. Besides, the distribution of the great earthquakes in Taiwan area is probably controlled by the distribution of the magnetized crust. I put over magnitude earthquakes (including historic earthquakes before 1990) on the magnetization map. The result is shown the good correlation between earthquake occurrence and low magnetization area in west Taiwan area. Most of earthquakes was distributed along the boundary of the high magnetization area called Lukang high (LHM). The collision stress probably released along the LHM and resulting lots of earthquakes.
關鍵字(中) ★ 演化
★ 磁力
★ 震測
★ 海洋地殼
★ 構造
★ 南海
關鍵字(英) ★ oceanic curst
★ South Chian Sea
★ tectonic
★ evolution
★ magnetic
★ seismic
論文目次 Contents
Chinese Abstracts ……………………………………………………………………i
English Abstracts …………………………………………………………………...iii
Acknowledgement …………………………………………………………………..vi
Contents …………………………………………………………………………… vii
List of Figures …………………………………………………………………….....xi
1. Introduction ……………………………………………………………………… 1
1.1 Tectonic settings of East Asia ……………………………………………….. 1
1.2 Evolution of the South China Sea Basin …………………………………….. 2
1.3 Luzon-Ryuku Transform Plate Boundary …………………………………… 3
1.4 Motivation and Purpose of the thesis ………………………………………... 3
2. New Bathymetry and magnetic lineations identifications in the northernmost South China Sea and its tectonic implications…………………………………….18
2.1 Introduction…………………………………………………………………..18
2.2 Bathymetric morphology……………………………………………………..19
2.2.1 New Bathymetric Map…………………………………………………20
2.3 Magnetic Anomalies………………………………………………………….22
2.3.1 New Magnetic Anomaly Map………………………………………….22
2.3.2 Age identification of the northern South China Sea……………………23
2.3.3 Equivalent magnetization map and continental oceanic boundary (COB)
………………………………………………………………………………..26
2.3.4 Luzon Ryuku Transform Plate Boundary (LRTPB)……………………27
2.4 Discussions.......................................................................................................28
2.4.1 A trapped piece of the Philippine Sea Plate (TPS) ?...............................28
2.4.2 Does the TPS belong to the SCS oceanic crust or not ?..........................28
2.5 Summary...........................................................................................................29
3. Crustal Structures of the northernmost South China Sea: Seismic reflection and gravity modeling ……………………………………………………………... 47
3.1 Introduction………………………………………………………………….47
3.2 Data and Processing…………………………………………………………48
3.3 Structral Interpretation Along Seismic Profiles……………………………..49
3.3.1 SEISMIC PROFILES ACROSS THE NORTHWEST PORTION OF THE LRTPB (GROUP A)……………………………………………50
3.3.1.1 MCS645-4 STACKED PROFILE (FIGURE 3.3)……………50
3.3.1.2 MCS645-3 STACKED PROFILE (FIGURE 3.4)…………….50
3.3.1.3 MCS645-2 STACKED PROFILE (FIGURE 3.5)…………….51
3.3.1.4 MCS645-1 STACKED PROFILE (FIGURE 3.6)…………….51
3.3.1.5 ACT111 AND ACT110 STACKED PROFILES (FIGURES 3.7 and 3.8)………………………………………………………...52
3.3.1.6 MCS689-1 MIGRATED PROFILE (FIGURE 3.9)……………52
3.3.2 SEISMIC PROFILES ACROSS THE SOUTHEAST PORTION OF THE LRTPB (GROUP B)……………………………………………..52
3.3.2.1 ACT108 STACKED PROFILE (FIGURE 3.10)……………….53
3.3.2.2 ACT105, ACT099a, ACT103 AND ACT101 STACKED PROFILES (FIGURES 3.11-3.14)……………………………53
3.3.2.3 MCS689-4b MIGRATED PROFILE (FIGURE 3.15)…………53
3.3.2.4 MCS689-3a MIGRATED PROFILE (FIGURE 3.16)…………54
3.4 Tectonic Features of the LRTPB sheared zone……………………………….54
3.5 Crustal characteristics of the northernmost SCS……………………………..55
3.6 Summary...........................................................................................................57
4. Formation of the northeastern South China Sea and tectonic significance of the early compressive episodes …………………………………………………… 78
4.1 Geological Settings and Introduction………………………………………...78
4.2 Identification of magnetic anomalies..……………………………………….79
4.2.1 Origin of Data…….…………………………………………………....79
4.2.2 Methodology…………………….……………………………………..80
4.2.3 Results…………………………………………….……………………81
4.3 Sedimentary features and main tectonic phases……………………………...81
4.3.1 Origin of Data…….…………………………………………………....81
4.3.2 Methodology…………………….……………………………………..82
4.3.3 Tectonic phases of T1 and T2 (Figures 4.7 to 4.12)……………………83
4.3.4 Localization of T1 tectonic deformation…………………………….....83
4.3.5 Localization of T2 tectonic deformation…………………………….....84
4.3.6 General tectonic implications…………………………………………..84
4.4 Age, nature and origin of T1 and T2 deformations…………………………..85
4.4.1 Age of deformations…………………………………………………....85
4.4.2 Nature and origin of deformations………………………………….….86
4.5 Summary……………………………………………………………………..87
5. Crustal Characteristic of the high magnetic anomaly zone extending from northern South China Sea margin to Taiwan …………………………………..107
5.1 Introduction…………………………………………………………………107
5.2 Geological Settings…………………………………………………………108
5.3 Magnetic Anomaly Data Analysis…………………………………………..109
5.3.1 New magnetic anomaly map………………………………………….109
5.3.2 Magnetic Inversion…………….……………………………………...110
5.4 Equivalent magnetization and tectonic implications………………………..111
5.4.1 Northern SCS margin and western Taiwan……………………………111
5.4.2 Luzon Arc area and eastern Taiwan…………………………………...112
5.4.3 Northern and northeastern offshore Taiwan…………….…………….113
5.5 Volcanism distributions from northern SCS margin to Taiwan……………..113
5.5.1 Eocene Volcanism………………………...…………….……………..113
5.6 Summary…………………………………………………………………….115
6. Relationship between great earthquakes and crustal magnetization in Taiwan
……………………………………………………………………………………... 125
6.1 Introduction…………………………………………………………………125
6.2 Equivalent magnetization and tectonic implications………………………..126
6.3 Relationship between distribution of earthquakes and crustal magnetization
…………………………………………………………………………………..127
7. Conclusions ……………………………………………………………………. 138
Bibliography ……………………………………………………………………... 141
參考文獻 Bibliography
Angelier, J., 1990, Geodynamic evolution of the eastern Eurasian margin. Tectonophysics 193, 362pp.
Briais, A., Patriat, P. and Taponnier, P., 1993, Updated interpretation of magnetic anomalies and seafloor spreading stages in South China Sea: implications for the Tertiary tectonics of Southeast Asia, J. Geophys. Res. 98, p.6299-6328.
Ben-Avraham, Z. and Uyeda, S., 1973, The evolution of the China Basin and the Mesozonic paleogeography of Borneo, Earth Planet. Sci. Lett. 18, p.365–376.
Behn M.-D. and Lin, J., 2000. Segmentation in gravity and magnetic anomalies along the U.S. East Coast passive margin: Implications for incipient structure of the oceanic lithosphere, J. Geophy. Res., 105, B11, p. 25,769-25,790.
Boillot, G., Beslier, M.-O. and Girardeau, J., 1995. Nature, structure and evolution of the ocean-continent boundary: The Lesson of the west Galicia margin (Spain), E. Banda et al., (eds.), Rifted Ocean-Continent Boundaries, p. 219-229.
Bosum, W., Barton, G.-D., Hsieh, S.-H., Kind, E., Schreiber, A. and Tang, C.-H., 1970. Aeromagnetic survey of offshore Taiwan: U.N. ECAFE CCOP Tech. Bull., 3, p.1-34.
Cande, S.C. and Kent, D.V. 1995, Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res. 98, p.6299–6328.
Chang, Y.-S. and Deng, T.-M., 1989. Characteristics of magnetic fields, in Cheng, K.-T., ed., The investigation and study on petroleum geology and geophysics in the western Taiwan Strait: Oceanic publisher, Peiking.
Chang, M., 1992. Integrated geological and geophysical interpretation of the Penghu sedimentary Basin, Petroleum Geology of Taiwan, 27, p.237-250.
Cheng, W.-B., 2004. Crustal structure of the high magnetic anomaly belt, Western Taiwan, and its implications for continental margin deformation, Marine Geophysical Researches, 25, p.79-93.
Chen, S., 1987, Magnetic profiles, in Atlas of Geology and Geophysics of the South China Sea, scale 1:2000,000, Second Mar. Geol. Invest. Brigade of the Minist. of Geol. and Miner. Resour., Guangdong Province, Guangdong.
Chen, C.-H., 2005. Study of Total Magnetic Field in Temporal and Spatial Variations in Taiwan (1989~2004), Ph. D. thesis in National Central University, Taiwan, 163 pages, in Chinese.
Chi, W.–C., Reed, D. L., Moore, G., Nguyen, T., Liu, C.–S. and Lundberg, N., 2003, Tectonic wedging along the rear of the offshore Taiwan accretionary prism, Tectonophysics, 374, p.199-217.
Clift, P. and J. Lin, 2001. Preferential mantle lithospheric extension under the South China margin, Marine and Petroleum Geology, 18, p.929-945.
Deschamps, A., Monie’, P., Lallemand, S.E., Hsu, S.-K. and Yeh, K.-Y., 2000, Evidence of early Cretaceous oceanic crust trapped in the Philippine Sea plate, Earth Planet. Sci. Lett. 179, p.503–516.
Gong, Z. et al., 1997, Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea, Science Press, Beijing, China, 510pp.
Hall, R., 1996, Reconstructing Cenozonic SE Asia, in Hall, R. and Blundell, D. J. (eds.), Tectonic Evolution of Southeast Asia, Geol. Sco. London, Spec. Publ. 106, p.203–224.
Hilde, T.W.C. and Lee, C.-S., 1984, Origin and evolution of the west Philippine basin: a new interpretation, Tectonophysics 102, p.85–104.
Hsu, S.-K., 1995, A cross-over technique to adjust track data, Computers and Geosciences 21, p.259–271.
Hsu, S.–K. and J.–C. Sibuet, 1995, Is Taiwan the result of arc-continental or arc-arc collision ?, Earth Planet. Sci. Lett. 136, p.315-324.
Hsu, S.–K., Liu, C.–S., Shyu, C.–T., Liu, S.–Y., Sibuet, J.–C., Lallemand, S., Wang, C., and Reed, D., 1998, New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation, TAO 9, p.509-532.
Hsu, S.-K. and Lo, C.-L., 2004, Change of cruatal gravitational potential energy in the Taiwan orogen by the Chi-Chi earthquake sequence. Earth Planet. Sci. Lett. 222, p.573-581.
Hsu, S.–K., Yeh, Y.–C., Doo, W.–B. and Tsai, C.–H., 2004, New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and their Tectonic Implications, Marine Geophysical Researches 25, p.29-44.
Hu, J.-C., Yu, S.-B., Angelier, J. and Chu, H.-T., 2001, Active deformation of Taiwan from GPS measurements and numerical simulations. J. Geophys. Res. 106, p.2265-2280.
Ho, C.-S., 1988, An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan. In: second ed. Ministry of Economic Affairs, Taipei, 192pp.
International Association of Geomagnetism and Aeronomy (IAGA), Division V, Working Group VMOD: Geomagnetic Field Modeling, 2005. The 10th-Generation International Geomagnetic Reference Field, Geophy. J. Int., 161, p. 561-565.
Krawczyk, C.-M. and Reston, T.-J., 1995. Detachment faulting and continental breakup: The S reflector offshore Galicia. E. Banda et al., (eds.), Rifted Ocean-Continent Boundaries, p.231-246.
Lallemand, S. et al., 1997, Swath bathymetry reveals active arc-continent collision near Taiwan, EOS, Transactions, AGU 78, p.178-175.
Lee, C.-R. and Cheng, W.-T., 1986, Preliminary heat flow measurements in Taiwan: presented at the Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore.
Lee, T.-Y., and Lawver, L.A., 1995, Cenozoic plate reconstruction of Southeast Asia, Tectonophysics 251, p.85–138.
Lee, C.-J. and Ting, S.-S., 1996. Geological interpretation of the Yun-Chang Paleo High, proceeding in: Geological conference in memory of Prof. Cang-Po Yen, p. 159-166, in Chinese.
Lin, H.-L., Lin, H.-R., Ke, H.-W. and Chou,T.-H., 1992, Petroleum Petentail of the pre-Miocene Formations in the Chianan Plain, Taiwan, Petroleum geology of Taiwan 27, p.177-197.
Lin, A.–T. and Watts, A.–B., 2002, Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107, B9, ETG2-1-2-19.
Lin, A.-T., Watts, A.-B. and Hesselbo, S.-P., 2003, Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research 15, p.453-478.
Lin, C.-H., 2000, Thermal modeling of continental subduction and exhumation contrained by heat flow and seismicity in Taiwan, Tectonopgysics 324, p.189-201.
Lin, J.-Y., Hsu, S.-K. and Sibuet, J.-C., 2004, Melting features along the western Ryuku slab edge (northeast Taiwan): Tomographic evidence. J. Geophys. Res. 109, B12402, doi:10.1029/2004JB003260.
Liu, C.-S., Huang, I.L. and Teng, L.S., 1997, Structures features off southwestern Taiwan, Mar. Geol. 137, p.705–738.
Liu, C.–S., Liu, S.–Y., Lallemand, S., Lundberg, N., Reed, D. L., 1998, Digital elevation model offshore Taiwan and its tectonic implications, TAO 9, p.705-738.
Lo, C.-L. and Hsu, S.-K., 2005, Earthquake-indueced gravitational potential energy change in the active Taiwan orogenic belt. Geophys. Jour. Internationl 162, p.169-176.
Ludmann, T. and Wong, H.–K., 1999, Neotectonic regime on the passive continental margin of the northern South China Sea., Tectonophysics 311, p.113-138.
Kao, H. and Chen, W.-P., 2000, The Chi-Chi earthquake sequence : active, out-of-sequence thrust faulting in Taiwan. Science 288, p.2346-2349.
Ma, K.-F., Lee, C.-T. and Tsai, Y.-B., 1999, The Chi-Chi, Taiwan earthquake: large surface displacements on an inland thrust fault, Eos Trans. AGU 80, p.605-611.
Magnetic Anomaly map of East Asia, 1994. In Geological survey of Japan and Committee for Co-ordination of Joint Prospecting for Mineral Resources in Asian offshore areas (CCOP).
Menzies, M.-A., Klemperer, S.-L., Ebinger, C.-J. and Baker, J., 2002. Characteristics of volcanic rifted margins, in Menzies, M.A., Klemperer, S.L., Ebinger, C.J., and Baker, J., eds, Volcanic Rifted Margins: Boulder, Colorado, Geological Society of America Special Paper, 362, p.1-14.
Morley, C.K., 2002, A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia, Tectonophysics 347, p.189–215.
Nissen, S.–S., Hayes, D.–E., Yao, B., Zeng, W., Chen, Y. and Nu, X., 1995, Gravity, heat flow, and seismic constraints on the process of crustal extension: Northern margin of the South China Sea., J. Geophys. Res. 100, p.22447-22483.
Paige, C. C. and Saunders, M. A., 1982. LSQR: an algorithm for sparse equations and sparse least squares. ACM Math. Softw. 8, p. 43-71.
Rangin, C., Sparkman, W., Pubellier, M. and Bijwaard, H.,1999, Tomographic and geological constrains on subduction along the eastern Sundaland continental margin (South-East Asia), Bulletin de la Sccie’te’ Ge’ologique de France 170, p.755–788.
Rau, R.-J. and Wu, F.-T., 1998, Active tectonics of Taiwan orogency from focal mechanisms of small-to-moderate0sized earthquakes, Terr. Atmos. Ocean. Sci. 9, p.755-778.
Ren, J., Tamaki, K., Li, S.and Junxia, Z., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics, 344, p.175-205.
Sandwell, D.T. and Smith, W.H.F., 1997, Marine gravity anomaly from Geosat and ERS1 satellite altimetry, J. Geophys. Res. 102, 10039–10054.
Schilz, C.H., 1990, The mechnics of earthquakes and faulting, Cambridge Univ. Press, Cambridge, UK..
Seno, T., 1977, The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasain Plate. Tectonophyiscs 42, p.209-226.
Sibuet, J-C., Louvel, V., Whitmarsh, R.-B., White, R.-S., Horsefield, S.-J., Sichler, B., Leon, P.and Recq, M., 1995. Constraints on rifting processes from refraction and deep-tow magnetic data: The example of the Galicia continental margin (West Iberia), E. Banda et al. (eds.), Rifted Ocean-Continent Boundaries, p. 197-217.
Sibuet, J.–C. and Hsu, S.–K., 1997, Geodynamics of the Taiwan arc-arc collision, Tectonophysics 274, p.221-251.
Sibuet, J.–C., Hsu, S.–K., Le Pichon, X., Le Formal, J.–P., Reed, D., Moore, G. and Liu, C.–S., 2002, East Asia plate tectonics since 15 Ma: constraints from the Taiwan region, Tectonophysics 344, p.103-134.
Sibuet, J.–C. and Hsu, S.–K., 2004, How was Taiwan created?, Tectonophysics 379, p.159-181.
Suppe, J., 1981, Mechanics of mountain building and metamorphism in Taiwan, J. Geol. Soc. China 4, 67–89.
Talwani, M. and Heirtzler, J.-R., 1964. Computation of magnetic anomalies caused by 2-D structures of arbitrary shape. Computers in the mineral industry, Part I: Standford Univ. Publ. Geol. Sci., 9, p.464-480.
Talwani, M, Ewing, J., Sheridan, R.-E., Holbrook, W.-S. and Glover III, L., 1995. The edge experiment and the U.S. East Coast Magnetic Anomaly, edited by E. Banda, M. Torne and M. Talwani, in: Rifted Ocean-Continent Boundaries, Kluwer Academic Publishers, p. 155-181.
Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R. and Cobbold, P., 1982, Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology 10, p.611–616.
Tapponnier, P., Peltzer, G. and Armijo, R., 1986, On the mechanics of the collision between India and Asia, in Coward M.P. and Ries, A.C. (eds.), Collision Tectonics, Geol. Sco. Spec. Publ. 19, p.115–157.
Taylor, B. and Hayes, D.-E., 1980, The tectonic evolution of the South China Basin, in: D.-E. Hayes (Ed.), The tectonic and geologic evolution of Southeast Asian seas and islands, 1, Am. Geophys. Union., Washington, DC., p.23-56.
Taylor, B. and Hayes, D.-E., 1983, Origin and history of the South China Sea Basin, in: D.-E. Hayes (Ed.), The tectonic and geologic evolution of Southeast Asian seas and islands, 2, Am. Geophys. Union., Washington, DC., p.23-56.
Teng, L.S., 1990, Late Cenozonic arc-continent collision in Taiwan, Tectonophysics 183, p.57–76.
Teng, L.-S. and Lin, A.-T., 2004. Cenozoic tectonics of the China continental margin: insights from Taiwan. In Malpas, L., Fletcher, C. J., Aitchinson, J.C. & Ali, J. (eds) Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226, p.313-332.
Turcotte, D.L. and Schubert, G. 2002, Geodynamics, 2nd edn. Cambridge University Press, 456pp.
Tsai, C.–H., Hsu, S.–K., Yeh, Y.–C. and Lee, C.–S., 2004, The crustal structures of northern continental margin in the South China Sea., Marine Geophysical Researches 25, p.63-78.
Wang, C.-S., Huang, C.-P., Ke, L.-Y., Chien, W.-J., Hsu, S.-K., Shyu, C.-T., Cheng, W.-B., Lee, C.-S. and Teng, L.-S., 2002. Formation of the Taiwan island as a solitary wave the Eurasian Continental Plate margin: magnetic and seismological evidence. Terr. Atmo. Ocean. Sci., 13, p. 339-354.
Wessel, P., and Smith, W. H. F., 1998, New improved version of Generic Mapping Tools released, EOS Trans. AGU 79, 579.
Wu, F.-T., Rau, R.-J. and Salzberg, D., 1997, Taiwan orogeny: thin skinned or lithospheric collision? Tectonophysics 274, p.191-220.
Yang, T.F. et al., 1996, A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics 258, p.85–101.
Yang, T.-F.,. Lee, T, Chen, C.-H., Cheng, S.-N., Knittel, U., Punongbayan, R.-S. and Radas, A.-R., 1996. A double usland arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics, 258, p.85-101.
Yeh, Y.-C. and Hsu, S.- K., 2004, Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling, Marine Geophysical Researches 25, p.45-61.
Yeh, Y.-C., Sibuet, J.-C. and Hsu, S.-K., 2006, Formation of the northeastern South China Sea and tectonic significance of the early compressive episodes, in preparation.
Yu, H.-S. and Chang, J.-F., 2002, The Penghu submarine canyon off southwest Taiwan: morphology and origin, TAO 13, p.547–562.
Yu, H.-S. and Chou, Y.-W., 2001, Characteristics and development of the flexural forebulge and basal unconformity of western Taiwan foreland basin, Tectonophysics 333, p.277–291.
Yu, S.-B., Chen, H.-Y. and Kuo, L.-C.,1997, Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, p.41-59.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明