博碩士論文 91221002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.231.212.98
姓名 謝詮(Chuan Hsieh)  查詢紙本館藏   畢業系所 數學系
論文名稱
(On the Blow-up solutions of Biharmonic Equation on a ball)
相關論文
★ 薛丁格方程式上直立波解的分類。★ Conformality of Planar Parameterization for Single Boundary Triangulated Surface Mesh
★ 一些線性矩陣方程其平滑及週期的最小 l_2-解之探討★ 關於漢米爾頓矩陣的某些平滑性分解
★ 在N維實數域之雙調和微分方程★ 一維動態系統其週期解之研究
★ 一些延滯方程其週期解之探討★ 雙調和微分方程其正整域解的存在性與不存在性之探討
★ 高階橢圓偏微分方程解的存在性及其行為之研究★ 有絲分裂中染色體運動之動態分析
★ 非線性橢圓方程及系統中解的唯一性和結構性之探討★ On the Positive Solution for Grad-Shafranov Equation
★ 關於三物種間之高流動性Lotka-Vollterra競爭擴散系統的波形極限行為★ 非線性橢圓型偏微分方程系統之解結構分析
★ On the study of the Golden-Thompson inequality★ 探討源自於隨機最佳化控制問題之偏微分方程與其相關應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中我們主要探討Biharmonic Equation and
Polyharmonic Equation 在有限區間解的行為就能Blow-up 。
在第一章節中我們以介紹的方式瞭解現今數學家對此方程式中
的探討跟瞭解並且給予正確的定義和主要定理的敘述,在第二章節裡
我給予Lemmas 做先前的預備知識,在第三章節中我給予定理完整的
證明,而在最後一個章節中列出相關文獻提供各位讀者參考。
摘要(英) In he paper we are consider for Biharmonic Equations and Polyharmonic Equation in the finite interval will Blow-up.
In the chapter 1 we are introduce the main theorem and to definition equation.
In the chapter we give some Lemmas in order to proofs theorems 1.1 and 1.2
In the chapter 3 we proofs of theorem 1.1 and 1.2,and the last chapter we give the references
關鍵字(中) 關鍵字(英) ★ blow-up
論文目次 CONTENTS
1. INTRODUCTION……………………………………………2~5
2. PRELIMINARIES……………………………………………5~13
3. MAIN THEOREM……………………………………………13~18
REFERENCE……………………………………………………………18~19
參考文獻 References
[1]Sattinger, D.H.:Conformal metric in R2 with prescribed carvature. Indi-
ana Univ. Math. J. 22, 1-4 (1972).
[2]Oleinik, O.A.:On the equantion 4u+K(x)eu = 0. Russian Math. Surveys
33, 243-244 (1978).
[3]W-M.Ni, On the elliptic equation 4u + K(x)e2u = 0 and conformal met-
rics with prescried Gaussian, Invent, Math. 66 (1982), 343-352.
[4]T.Kusano and S. Oharu, Bounded entire solutions of second order semi-
linear elliptic equation with application to a parabolic intial value problem,
Indiana Univ. Math. J. 34 (1985) 85-95.
[5]W-M.Ni, On the elliptic equation 4u+K(x)u
n¡2
n+2 = 0, its generalizations,
and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
[6]R.McOwen,On the equation 4u + K(x)e2u = f and prescribed negative
carvature in R2, J. Math. Anal.Appl. 103 (1984), 365-370.
[7]Kazdan, J., Prescribing the curvature of a Riemannian manifold, NSF-
CBMS Regional Conference Lecture Notes 57 (1985).
[8]Cheng, K.-S. and Lin, J.-T., on the elliptic Equation 4u = K(x)u¾ AND
4u = K(x)e2u;Trans. of the Amer. Math.
[9]Cheng,K.-S. and Smoller, Joel A.,Conformal metrics with prescribed Gaus-
sian curvature on R2,Trans.Math.Soc. 336 (1993), no.1,219-251.
[10]Lin, C.-S., A classi¯cation of solution of a conformally invariant fourth
order equation in Rn, Comment. Helv. 73(1998) 206-231
指導教授 陳建隆(Jann-Long Chern) 審核日期 2004-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明