博碩士論文 91221004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:35.172.100.232
姓名 李俊廷(Chun-Ting Li)  查詢紙本館藏   畢業系所 數學系
論文名稱 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
(Piecewise Bilinear Approximations to the 2-D Stationary Incompressible Navier-Stokes Problem by Least-Squares Finite Element Methods)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays
★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究
★ 非線性耦合動力網路的同步現象分析★ 邊界層和內部層問題的穩定化有限元素法
★ 數種不連續有限元素法求解對流佔優問題之數值研究★ 某個流固耦合問題的有限元素法數值模擬
★ 高階投影法求解那維爾-史托克方程組★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法
★ 二維非線性淺水波方程的Lax-Wendroff差分數值解★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬★ 一種用於人臉偵測的卷積神經網路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們主要研究二維穩態不可壓縮那維爾-史托克問題在給定速度邊界值情況下的最小平方有限元素法之片狀線性數值解。首先引入兩個新未知函數〝旋度和總壓力〞後,將那維爾-史托克問題分別改寫成〝速度-旋度-壓力〞和〝速度-旋度-總壓力〞兩個一階偏微分方程組。接著我們引用L2最小平方與網格依賴加權最小平方有限元素法求解源自於皮卡型迭代法所產生的系列奧辛問題。其中相對應的最小平方能量泛函定義在一個適當乘積函數空間下,分別取每項偏微分方程式殘餘的L2模未加權或加權之平方和。數值實驗證明,在雷諾數小的時候,L2最小平方法比網格依賴加權最小平方法更準確;然而對大雷諾數的問題,網格依賴加權最小平方法比L2最小平方法明顯地好很多。最後列出在不同雷諾數下凹槽驅動流場的數值結果。
摘要(英) In this thesis, we study the piecewise bilinear finite element approximations to the two-dimensional stationary incompressible Navier-Stokes equations with the velocity boundary condition by using the least-squares principles.
The Navier-Stokes problem is first recast into the velocity-vorticity-pressure and velocity-vorticity-total pressure first-order systems by introducing the vorticity variable and, in addition, total pressure variable. We then apply both the L2 least-squares and mesh-dependent weighted least-squares finite element schemes
to approximate the solutions of the sequence of Oseen problems arising from a Picard-type iteration associated with these first-order systems. The corresponding least-squares energy functionals are defined in terms of the sum of the squared L2 norms without or with mesh-dependent weights of the residual equations over a product function space. Numerical evidences show that, for low Reynolds number flows, the L2 least-squares method is more accurate than the mesh-dependent weighted least-squares method.
For flows with large Reynolds numbers, the mesh-dependent weighted least-squares method is apparently better than the L2 least-squares method. Some numerical results for driven cavity flows with various Reynolds numbers are also given.
關鍵字(中) ★ 凹槽驅動流場
★ 皮卡型迭代法
★ 奧辛問題
★ 最小平方有限元素法
★ 那維爾-史托克問題
關鍵字(英) ★ driven cavity flows
★ velocity-vorticity-total pressure formulation
★ least-squares finite element methods
★ Oseen equations
★ velocity-vorticity-pressure formulation
★ Navier-Stokes equations
論文目次 Abstract 1
1. Problem formulation 2
2. Least-squares finite element methods 5
3. Some theoretical results for the Oseen problem 9
4. Numerical results for smooth exact solutions 10
5. Numerical results for driven cavity flows 18
6. Conclusions 44
References 45
參考文獻 [1] P. B. Bochev, Analysis of least-squares finite element methods for the
Navier-Stokes equations, SIAM, J. Numer. Anal., 34 (1997), pp. 1817-1844.
[2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite
element methods for the Stokes equations, Math. Comp., 63 (1994),
pp 479-506.
[3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares
type, SIAM Rev., 40 (1998), pp 789-837.
[4] P. B. Bochev, Z. Cai, T. A. Manteuffel and S. F. McCormick, Analysis of
velocity-flux first-order system least-squares principles for the Navier-
Stokes equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990-1009.
[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Springer-Verlag, New York, 1994.
[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,
Springer-Verlag, New York, 1991.
[7] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares
for velocity-vorticity-pressure form of the Stokes equations, with
application to linear elasticity, ETNA, 3 (1995), pp. 150-159.
[8] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least
squares for the Stokes equations, with application to linear elasticity,
SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741.
[9] C. L. Chang, An error estimate of the least squares finite element
method for the Stokes problem in three dimensions, Math. Comp., 63 (1994),
pp. 41-50.
[10] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite
element method of velocity-pressure-vorticity formulation for Stokes
problem, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 247-255.
[11] C. L. Chang and J. J. Nelson, Least-squares finite element method for the
Stokes problem with zero residual of mass conservation, SIAM J. Numer.
Anal., 34 (1997), pp. 480-489.
[12] C. L. Chang, S.-Y. Yang, and C.-H. Hsu, A least-squares finite element
method for incompressible flow in stress-velocity-pressure version,
Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 1-9.
[13] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite
element method for the velocity-vorticity-pressure Stokes equations
with velocity boundary conditions, Appl. Math. Comput., 130 (2002),
pp. 121-144.
[14] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite
element methods for the Stokes equations, 20 (1998), pp. 878-906.
[15] H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least-
squares mixed finite element method for the 3D Stokes equations,
SIAM J. Numer. Anal., 41 (2003), pp. 2114-2130.
[16] M. Feistauer, Mathematical Methods in Fluid Dynamics, Longman Group UK
Limited, 1993.
[17] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes
Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.
[18] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag,
Berlin, 1998.
[19] S. D. Kim, Y. H. Lee, and S.-Y. Yang, Analysis of [H(-1), L2, L2]
first-order system least squares for the incompressible Oseen type
equations, to appear in Appl. Numer. Math.
[20] C.-C. Tsai and S.-Y. Yang, On the velocity-vorticity-pressure least-
squares finite element method for the stationary incompressible Oseen
problem, submitted for publication, 2004.
[21] S.-Y. Yang, Error analysis of a weighted least-squares finite
element method for 2-D incompressible flows in velocity-stress-pressure
formulation, Math. Meth. Appl. Sci., 21 (1998), pp. 1637-1654.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2004-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明