博碩士論文 91221013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.228.24.192
姓名 李俊憲(Chun-Hsien Li)  查詢紙本館藏   畢業系所 數學系
論文名稱 遲滯型細胞神經網路似駝峰行進波之研究
(On Camel-Like Traveling Wave Solutionsin Cellular Neural Networks with Distributive Delay)
相關論文
★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays
★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究
★ 非線性耦合動力網路的同步現象分析★ 邊界層和內部層問題的穩定化有限元素法
★ 數種不連續有限元素法求解對流佔優問題之數值研究★ 某個流固耦合問題的有限元素法數值模擬
★ 高階投影法求解那維爾-史托克方程組★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法
★ 二維非線性淺水波方程的Lax-Wendroff差分數值解★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬★ 一種用於人臉偵測的卷積神經網路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這篇論文主要研究散佈在一維整數網格上的遲滯型細胞神經網路似駝峰行進波的種類。細胞元之間的動態行為除了有瞬時的自身回饋外,由於信號傳播轉換速度的關係,會與左邊最鄰近的m個細胞元產生遲滯相互作用。在本文中,我們使用階梯法直接勾勒出解析解的形式,並進一步證明除了單調行進波的存在性外,在某些適當條件下,亦存在似駝峰的非單調行進波。最後我們也搭配一些數值結果來驗證理論分析。
摘要(英) In this thesis, we study the camel-like traveling wave solutions for a class of delayed cellular neural networks distributed in the one-dimensional integer lattice Z. The dynamics of a given cell is characterized by instantaneous
self-feedback and neighborhood interaction with its nearest m left neighbors with distributive delay due to, for example, finite switching speed and finite velocity of signal transmission.
Using the method of step, we can directly figure out the analytic solution and then prove that,
in addition to the existence of monotonic
traveling wave solutions, for certain templates there exist non-monotonic traveling wave solutions such as camel-like waves with many critical points. Some numerical results are also given.
關鍵字(中) ★ 網格動態系統
★ 似駝峰行進波
★ 遲滯型細胞神經網路
★ 階梯法
關鍵字(英) ★ lattice dynamical systems
★ camel-like traveling waves
★ method of step
★ delayed cellular neural networks
論文目次 Contents
˙Abstract ………………………………………………………………………1
˙Introduction …………………………………………………………………2
˙Construction of the solution formula …………………………………6
˙Proof of the main theorem ………………………………………………14
---3.1. Profiles for αj>0, 1≦j≦m ……………………………………15
---3.2. Profiles for αj<0, 1≦j≦m ……………………………………16
---3.3. Profiles for alternating αj with |αj|≧|αj+1| …………17
˙References …………………………………………………………………30
參考文獻 References
[1] P. W. Bates, X. Chen, and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), pp. 520-546.
[2] J. W. Cahn, J. Mallet-Paret, and E. S. Van Vleck, Traveling wave solutions for systems of ODE's on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59 (1999), pp. 455-493.
[3] S.-N. Chow, J. Mallet-Paret, and W. Shen, Traveling waves in lattice dynamical systems, J. Diff. Eqns., 149 (1998), pp. 248-291.
[4] L. O. Chua, CNN: A Paradigm for Complexity, World Scientific Series on Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998.
[5] L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), pp. 147-156.
[6] L. O. Chua and L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits Syst., 35 (1988), pp. 1257-1272.
[7] L. O. Chua and L. Yang, Cellular neural networks: applications, IEEE Trans. Circuits Syst., 35 (1988), pp. 1273-1290.
[8] T. Erneux and G. Nicolis, Propagation waves in discrete bistable reaction-diffusion systems, Physica D, 67 (1993), pp. 237-244.
[9] I. Gyori and G. Ladas, Oscillating Theory of Delay Differential Equations with
Applications, Oxford University Press, Oxford, 1991.
[10] C.-H. Hsu and S.-S. Lin, Existence and multiplicity of traveling waves in
a lattice dynamical system, J. Diff. Eqns., 164 (2000), pp. 431-450.
[11] C.-H. Hsu, S.-S. Lin, and W. Shen, Traveling waves in cellular neural networks,
Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307-1319.
[12] C.-H. Hsu and S.-Y. Yang, On camel-like traveling wave solutions in cellular neural networks, J. Diff. Eqns., 196 (2004), pp. 481-514.
[13] C.-H. Hsu and S.-Y. Yang, Wave propagation in RTD-based cellular neural
networks, to appear in J. Diff. Eqns.
[14] C.-H. Hsu and S.-Y. Yang, Structure of a class of traveling waves in delayed
cellular neural networks, submitted for publication, 2002.
[15] J. Juang and S.-S. Lin, Cellular neural networks: mosaic pattern and spatial chaos, SIAM J. Appl. Math., 60 (2000), pp. 891-915.
[16] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556-572.
[17] S.-S. Lin and C.-W. Shih, Complete stability for standard cellular neural networks, Internat. J. Bifur. and Chaos, 9 (1999), pp. 909-918.
[18] S. Ma, X. Liao, and J. Wu, Traveling wave solutions for planar lattice differential systems with applications to neural networks, J. Diff. Eqns., 182 (2002), pp. 269-297.
[19] J. Mallet-Paret, The global structure of traveling waves in spatial
discrete dynamical systems, J. Dynam. Diff. Eqns., 11 (1999), pp. 49-127.
[20] W. Shen, Traveling waves in time almost periodic structure governed by bistable nonlinearities I. stability and uniqueness, J. Diff. Eqns., 159 (1999), pp. 1-54.
[21] W. Shen, Traveling waves in time almost periodic structure governed by bistable nonlinearities II. existence, J. Diff. Eqns., 159 (1999), pp. 55-101.
[22] C.-W. Shih, Complete stability for a class of cellular neural
networks, {it Internat. J. Bifur. and Chaos},
9 (2001), pp. 169-177.
[23] P. Thiran, Dynamics and Self-Organization of Locally Coupled
Neural Networks, Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1997.
[24] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, Pattern formation properties of autonomous cellular neural networks, IEEE Trans. Circuit Syst., 42 (1995), pp. 757-774.
[25] F. Werblin, T. Roska, and L. O. Chua, The analogic cellular neural network as a bionic eye, Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569.
[26] P. Weng and J. Wu, Deformation of traveling waves in delayed cellular neural
networks, Internat. J. Bifur. and Chaos, 13 (2003), pp. 797-813.
[27] J. Wu and X. Zou, Asymptotical and periodic boundary value problems of mixed
FDEs and wave solutions of lattice differential equations, J. Diff. Eqns., 135 (1997), pp. 315-357.
[28] B. Zinner, Existence of traveling wavefront solutions for discrete
Nagumo equation, {it J. Diff. Eqns.}, 96 (1992), pp. 1-27.
[29] B. Zinner, G. Harris, and W. Hudson, Traveling wavefronts for the discrete
Fisher's equation, J. Diff. Eqns., 105 (1993), pp. 46-62.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2004-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明